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Preface 

This book contains the extended abstracts of lectures presented at the 24th Nordic 
Seminar on Computational Mechanics (NSCM-24), held at the Marina Congress Center, 
Helsinki, Finland, 3-4 November 2011, and hosted by Aalto University School of 
Engineering. 

The Nordic Association of Computational Mechanics (NoACM) was founded in 
October 1988. Its objective is to stimulate and promote research and applications within 
the area of computational mechanics. The main activity of NoACM is the annual two 
day seminar which provides a forum for personal contacts and for the exchange of 
ideas. Young researches, including doctorate and graduate students, are particularly 
welcome.  Thus,  making  a  friendly  and  creative  atmosphere  for  the  participants  is  
considered important. 

This year’s seminar contains ten invited plenary lectures, three invited keynote 
lectures and 60 contributed presentations which sums up to 73 presentations altogether.  
The seminar will honour professor Martti Mikkola’s 75th anniversary. In this 
proceedings, the invited plenary lectures are placed first followed by the presentations 
in the other sessions. Some of the presentations are published as a full length peer 
reviewed journal paper in Rakenteiden Mekaniikka (Journal of Structural Mechanics). 
For these presentations, only the summaries are included in this proceedings. 

Sincere thanks go to the thematic session organisers, all of the authors and 
participants for making the NSCM-24 a stimulating conference. Finally, we thank all 
the sponsors: ETI Products, Federation of Finnish Learned Societies, FEMdata, 
Finnforest, Finnish Association of Civil Engineers RIL, FMC Group – (Finnmap 
Consulting, KPM-Engineering, Aaro Kohonen), Konecranes, Magnus Ehrnrooth 
Foundation, Magnus Malmberg Consulting Engineers, Numerola, Pontek Consulting 
Engineers,  Process  Flow,  Ruukki  Construction,  SITO,  STX  Finland,  TVO,  VTT  
Technical Research Centre of Finland, whose support was indispensable for the 
organisation of this seminar. 

 
 

Otaniemi, October 2011 

Jouni Freund and Reijo Kouhia 
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Thermodynamic interpretation of finite volume 
algorithms   

Arkadi Berezovski 

Summary. The thermodynamic consistency is a desired feature of numerical algorithms for physical 
problems. Such a consistency can be achieved if the computational cells are considered as discrete 
thermodynamic systems. It is shown that faithful, accurate, and conservative finite-volume algorithms are 
compatible with thermodynamics through the identification of numerical fluxes and excess quantities. 
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A new concept for a very large twin hull cruise ship  
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SSummary. A proposed cruise ship concept  consists  of  a  wide,  catamaran type ship with two sleek,  
wave-piercing hulls. The overall length is 366 m and the total width is 70 m. There are two separate 
superstructures facilitating more than two thousand passenger cabins, all with exterior balconies. The 
twin hull design implies good stability and seaworthiness; however, the deck connecting the two hulls 
will be exposed to extreme environmental forces. To this end a ship-wide, cellular deck structure is 
devised for strength and stiffness. The ship also features many new solutions for the structure as well 
as  protected space for  life  and service boats,  and a  possibility  for  use of  a  spectacular,  large kite  as  
well as wind foils for supplementary propulsion. 
 
Key words: computational mechanics, cruise ship, twin hull, innovation 

Introduction 

The cruise market is showing strong and continuous growth and cruise operators are in search of new 
concepts and bigger ships that can offer more spectacular experience for the passenger.  The actual 
value and performance of a cruise ship is determined by its design, onboard facilities and 
entertainment, as well as technical performance in terms of seaworthiness, environmental 
performance, and safety. 

In spite of recent years with economical difficulties in many countries the cruise market seems to 
be in positive development. The annual growth of passenger journeys is currently at 7.7 percent with 
an estimated total number of number of 14.3 million passengers in 2010; this last figure is expected to 
grow to  21.6 million in 2014 [1]. Currently the Asian market makes out only 4.2 percent of the world 
cruise market; it is believed that this market has potential for growing much faster than other markets 
and that this may only be achieved by introducing a new type of mega cruise ship.  

There are some notable characteristics  of  the cruise market  development.  First  of  all,  the size of  
cruise ships are typically classified in different groups spanning from small ships 2-10000 GT, via 10-
60000 GT, 60-100000 GT, and the very large ship beyond 100000GT. In the future we may also 
include ultra-large cruise ships beyond 250000 GT. The number of ships in the “very large” group is 
clearly the one that  will  be growing fastest  in  years  to  come,  possibly with a  rate  of  more than 10.0 
percent per year. It also seems clear that the actual size of ships within the large ship category is also 
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increasing with many ships larger than 150000 GT. For instance, since 2009 several ships in the 
“Oasis Class” with more than 225000 GT have been built in Finnland. 

A new cruise ship concept 

The current study concerns a very large catamaran suited as a platform for a cruise ship, see figure 1. 
It is seen that there are two very long and sleek hulls that are connected with a strong deck at a good 
distance above the water line. Each hull structure carries its own, large superstructure; these are 
connected at high level at the fore bridge area of the ship. Some characteristic geometric measures are:  
 
Length OA:   366m  
Length Deck:   300m  
Breadth Deck:   18m+22m+18m = 58m  
Breadth WL:   25m+20m+25m = 70m  
Draught at waterline:  9m  
Freeboard Deck:  7m  
Freeboard:   16m  
Depth to Upper Deck:  22m +10m = 32m (+45m wind foils) 
Displacement:   86828 m3 
Gross Tonnage:  260000 ton 
 

         
 

 
Figure 1. Views of the proposed cruise catamaran 

 
The two hulls with the interconnecting deck structure may be built with conventional high strength 

steel. The chosen shape of the two hulls and the connecting deck structure is illustrated in figure 2. 
The bows have an extended lower end and will as such be “wave piercing”. The reason for this choice 
is that we would like to reduce pitching accelerations during coarse head seas. The wave piercing 
behaviour implies that there will be much more wave overflow and green seas on the fore part of the 
hulls; however, this area is only a very small part of the overall deck area that will not be accessible 
for passengers. 

A target for the connecting deck design has been to provide a structural connection between the 
two hulls that is strong and stiff enough to withstand the extreme forces that the ship will be subjected 
to during severe sea conditions. At the same time the large volume of the deck structure provides very 
valuable internal space that ideally should be available for use without obstructions from extensive 
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structural  members  and  barriers.  As  will  be  described  later  in  this  paper,  such  a  performance  is  
achieved by using a highly efficient cellular structural design. 

 

 
 

Figure 2. Surface lines showing shape of hulls and deck 

Safety and environmental performance 

The fact that the mega-size catamaran represents something new means that hazard identification, 
safety case assessments, and incorporation of the best active  and passive safety measures become all 
the more important. The new safety philosophy within SOLAS 2010 Chapter “Safe Return to Port for 
Passenger Ships” has extensive implications for the planning of the catamaran cruise ship. A crucial 
parameter is damage stability. It turns out that twin hulls can easily be compartmented with bulk heads 
and even double exterior skins below the water line zone.  

Similarly, fire zoning, fire barriers and curtains, and fire fighting measures can be implemented 
just as well or even better than in the case of mono-hulls. Unlike current cruise ships the mid-ship 
open deck goes along the entire length of the ship and provides a large exterior zone where passengers 
may gather in situations of danger rather than having to escape along the exterior sides of the ship onto 
traitorous water. 

 

 
 

Figure 3. Lifeboats launched from interior wet deck 
 

Life boats may be located on the exterior along the entire length of the superstructures. However, 
in the “spirit of innovation” another, more radical solution is here suggested.  The water between the 
two hulls is clearly calmer and better protected than is the case for the sea along the exterior sides. An 
idea is thus to provide docking space for life boats above the wet deck inside the main deck structure 
that combines twin hulls, see figure 3. Having 6000 people onboard requires life boat capacity for 
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more than 5000 people. This can only be done with very large life boats such as the 370 person life 
boats used for Oasis of the Seas [2]. 

Cruise passenger are increasingly aware of the importance of environmental impact and 
environmental performance. A spectacular feature that may contribute towards a positive image of the 
ship is the capability of launching a large kite from two retractable launching masts at the bows of the 
ship, see figure 4. The fact that there will be two masts enhances the operational efficiency of such a 
kite. The sail itself can easily be packed away when not in use. 

 

 
 

Figure 4.  Kite propulsion and telescopic air foils 
 

The figure also two telescopic and adjustable air foils, one on each superstructure. These air foils 
can be deployed and oriented in accordance with best use of wind conditions and provide “free” and 
environmentally friendly propulsion. When not in use the air foils are compacted on the upper decks, 
see figure 4, whereas they can quickly be telescopically extended when needed. The fact that the 
catamaran is very wide and stable makes such a feature possible, whereas a conventional mono-hull 
cruise ship would have difficulties with heeling and stability during operation of such large wind foils. 

Hydrodynamics and structural performance 

No doubt hydrodynamics and sea-keeping for this mega-catamaran may provide a greater 
challenge than is the case for conventional ships. So far only preliminary assessments have been 
carried out in this respect; further studies and optimisation will have to be carried out in the future. A 
general observation is that the two very sleek hulls will have relatively little wave resistance whereas 
their skin or surface friction will be relatively larger than for corresponding mono-hull ships. It is still 
too early to say whether some positive wave cancellation effects may be achieved between the two 
hulls; this is also left for further studies.  

Some preliminary resistance calculations based on Holtrop and Mennen method [3] indicates that 
the total  resistance of  the catamaran will  be somewhat  larger  than for  a  “theoretical”,  corresponding 
mono-hull ship where the current twin hulls are merged into a single body. However, this increased 
resistance is not very large. Typically the power requirement for the catamaran is estimated to be the 
same as for a corresponding mono-hull with 2 to 3 knots higher speed. Considering that the catamaran 
easily lends itself to kite power as well as air foil power the comparison may in the end turn out to be 
in the favour of the catamaran. 
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Figure 5. Incoming waves at 80 degrees and deck stresses 
 

A large catamaran can be designed with the same safety and strength levels as for a conventional 
ship. A catamaran ia exposed to some unusual wave forces; this particularly concerns skew incoming 
waves from the side that will expose the twin hulls to an extremely severe warping (twisting) load 
condition, see figure 5. 

Realizing this particular challenge the deck that binds the two hulls has to be designed in an 
innovative way. This is done by using a cellular, double deck where the cells are continuously 
connected with each other and oriented in the transverse direction of the ship. It can be shown that this 
kind  of  cell  structure  is  extremely  stiff  and  strong.  This  structure  is  also  very  well  suited  for  load  
conditions which impose large transverse bending moments on the connecting deck. 

Calculations with the finite element program ANSYS has revealed that it will not be difficult to all 
safety requirements for this deck. Figure 5 shows stress results obtained for the most severe warping 
load condition for this deck. The design of other parts of the ship is rather straight forward; and force 
and stress can easily be determined in a conventional way by finite element analysis and checked for 
compliance in relation to rule requirements.  
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SSummary. We investigate the motion of a solid with large deformations assuming the rotation 
matrix and the impenetrability reaction depend on their neighbourhood. We prove that there 
exists a motion which satisfies the equations of mechanics. 

 

Key words: motion. large deformation, rotation matrix, impenetrability reaction  
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Large eddy simulation studies on convective 
atmospheric boundary layer 

Antti Hellsten and Sergej Zilitinkevich 
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SSummary. This  article  describes  current  Large-Eddy  Simulation  (LES)  -based  research  
activities at Finnish Meteorological Institute focusing on convective atmospheric boundary 
layer. The convective atmospheric boundary layer is first introduced and its main characteristics 
are briefly discussed. The related research problems are then presented, and the LES method  
we use for these studies is briefly introduced. 

Key words: convection, turbulence, atmospheric boundary layer, large-eddy simulation, LES 

Introduction 

Atmospheric boundary layer (ABL) is defined as the layer next to the ground surface in which  
ground directly influences the atmosphere. The most influential effects from the ground surface 
are vertical fluxes of momentum, heat and moisture. Also fluxes of various admixtures, both 
natural and anthropogenic, are important ABL processes. The depth of ABL can vary from few 
tens of meters in certain high-latitude winter conditions to several kilometres in summer-time 
fair-weather conditions, especially on low latitudes. The former is an example of strong stable 
stratification and the latter of unstable stratification leading to development of convective 
boundary layer (CBL) which is the topic of this paper. 

Unstable stratification takes place when ground surface is heated and becomes warmer than 
air above it. In other words, when the surface heat flux is positive (upwards). This leads to 
instability and formation of convective plumes or up-drafts and corresponding down-drafts. 
Such structures are very efficient mixing agents, and as a result a mixed layer develops above 
the unstable surface layer. In the mixed layer, local stability is near neutral on the average 
because the potential temperature is approximately height-constant there. Also the mean wind is 
practically constant in the mixed layer. CBL grows in time against stable stratification in the 
free atmosphere as the up-drafts hammer the stably stratified air aloft (capping inversion). 
Between the mixed layer and the free atmosphere, there is an entrainment zone where the heat 
flux is negative. This means that CBL is heated not only from the ground but also through its 
top boundary on the altitude zi. Figure 1 illustrates the structure of the CBL and shows examples 
of horizontally averaged profiles of heat-flux, temperature and wind components for a 
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horizontally homogeneous dry barotropic CBL with geostrophic wind of 18 m/s and constant 
surface heat-flux of 128 W/m2.  

  
 

Figure 1. Structure of convective boundary layer with mean geostrophic wind of 18 m/s and 
surface heat flux of 128 W/m2. Spatially averaged profiles of kinematic heat flux, potential and 

in-situ temperatures and wind components. 
 

  
Buoyant up-drafts and down-drafts are coherent structures with remarkably long lifetimes 

compared to the less-organized turbulent motion also present everywhere in the CBL. These 
structures can take the form of convective cells typical in weak-wind conditions or nearly wind-
wise oriented rolls typical in stronger wind, see Fig 2. Convective structures are embedded in 
locally generated ordinary turbulence with very wide range of scales. Therefore they cannot be 
easily separated from the ordinary turbulence. The convective structures very efficiently 
transport heat upwards and momentum downwards even though the local mean gradients of 
velocity and potential temperature in the mixed layer are essentially zero as shown in Figure 1. 
This means that the classical gradient transport hypothesis and eddy-viscosity concept do not 
form a feasible basis for parametrizing (modelling) convective mixing. 

 

 
 

Figure 2. Example of cell convection (left) and roll convection (right). Vertical velocity on a 
horizontal cut plane in the mixed layer is shown by gray scale. Note that the images have 

different scales; the left image covers approximately 10 km�10 km and the right one covers 
about 35 km�70 km. 

 
We live in the ABL and the weather conditions we feel in our everyday life depend very 

much on the ABL processes. However, most of such processes have so small length scales that 
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they cannot be captured by the numerical weather-prediction models because of their limited 
resolution. Therefore these processes must be parameterized in such models. As another 
example, global warming depends very essentially on the processes which control the thermal 
balance of ABL, hence we must deepen our understanding of the ABL dynamics and 
thermodynamics in both stable and convective cases, both cases are important. 

CBL has been studied relatively much during several decades already. Even LES-based 
research started very early, already in the beginning of 1970's when Deardorff carried out his 
pioneering LES studies of CBL [1-3]. Thus many basic processes are quite well understood, but 
many open questions still remain. A few such research questions that we are focusing on at 
Finnish  Meteorological  Institute  (FMI)  are  introduced  in  the  next  section.  Some  results  are  
shown in the oral presentation, although the space does not permit to present them in this paper. 

Some CBL-related research questions currently studied at FMI 

Scaling and similarity analysis 
Scaling of the pure convection situation with no mean wind has been known since Deardorff's 
work [2]. Similarly, the scaling of the surface layer, the Monin-Obukhov similarity theory [4], 
has been well established since the 1950's. However, there is no systematic scaling and 
similarity analysis proposed for a wide range of stability regimes from pure convection to near 
neutral CBL. Making use of dimensional analysis and our LES results with wide range of 
stability conditions as well as other parameters make it possible to look for appropriate scaling 
and similarity states. This is currently being done for barotropic CBLs and will later be 
extended to practically more relevant baroclinic situations. 
 
Contribution of coherent structures to fluxes and variances  
As mentioned above, the eddy-viscosity approach is not suitable for parametrizing convection in 
CBL owing to its non-local nature. On the other hand, smaller-scale ordinary turbulence also 
present in CBL can well be parametrized using the eddy-viscosity approach. So called mass-
flux approach, see e.g. [5], has been applied to parametrize the contributions of the convective 
coherent structures on the total fluxes. However, in order to do so, these two types of motion 
must be somehow separated from each other in LES data to provide data for calibrating such 
parametrizations. How to separate coherent structures from ordinary turbulence is not a well 
posed problem as the energy spectrum is continuous, I.e. there is no spectral gap between these 
two types of motion. However, we have tried different kinds of partitionings and they quite 
systematically show that the coherent structures build up most of the fluxes and variances. 
However, proper separation criteria applicable throughout the CBL is still to be found. 
 
Spectral energy transfer 
The classical picture of turbulence, emanating from the long research history of homogeneous 
turbulence, involves the concept of forward energy cascade. That is, energy is fed into the 
largest turbulent structures and it gradually cascades towards smaller and smaller eddies until it 
is dissipated into heat mostly by the small-scale motion with very sharp gradients. However, 
there are reasons to assume that in CBL also inverse cascade may happen from middle-sized 
structures to the largest coherent ones. Buoyant energy insertion on the ground surface happens 
in filament-like relatively narrow up-drafts which increase in breadth with increasing altitude. 
This may be an indication of inverse energy cascade. However, the existence of such inverse  
cascade has neither been proven nor quantified, yet. We are currently studying this problem 
from our LES-results. If it can be shown that the inverse energy cascade exists in CBL, the 
current theories of CBL turbulence should possibly be revised. 
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Computational methods 

We use an LES model called PALM for our CBL studies. PALM is efficiently parallelized and 
designed for ABL problems (Raasch & Schröter 2001; Letzel et al. 2008). PALM has been 
developed at Leibniz Universität Hannover and adopted as a research tool at FMI in 2009. 
PALM is a finite difference method for incompressible filtered Navier-Stokes equations with 
Boussinesq approach to buoyancy. Advection can be discretized using a second-order central 
scheme [8] or a fifth-order upstream scheme [9]. Solution of the incompressible Navier-Stokes 
system is based on the projection method [10]. Pressure can be solved in the Fourier space in 
cases of horizontally homogeneous boundary layer (periodic boundary conditions) or using a 
multi-grid method for inhomogeneous cases. We are employing the former option for our 
studies discussed in this paper. An explicit third-order accurate Runge-Kutta scheme is used for 
time integration. PALM models the sub-grid scale turbulence by a one-equation model [11]. 

Owing to the efficient parallelization of PALM based on the Message Passing 
Interface(MPI), we are routinely computing problems with of the order of 500 million grid 
nodes using 500-600 processing elements on the Cray XT-5 supercomputer environment at 
FMI. As part of a grid-independence study, we have successfully carried out an LES with over 
two billion nodes using 1296 parallel processes. 
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Summary. It is demonstrated that the inertial terms in the dynamic equations of motion in a moving
frame take a simple universal form in terms of the classic mass matrix, when the traditional Lagrangian
approach with local velocities as time derivatives of position is replaced by a Hamiltonian approach, in
which absolute velocities and local positions are interpolated by identical shape functions. The resulting
equations take on a simple systematic form that lends itself naturally to conservative time integration
and permits a simple algorithmic damping scheme in terms of local motion.
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Introduction

Rotating structures are acted on by inertial forces generated by the rotation. If the local displace-
ment of the structure at a generic point is represented by shape functions and local velocities
are obtained by time differentiation of the interpolated displacements, the inertial effects from
rotation leads to mass matrices containing the angular velocity and acceleration of the rotating
frame of reference. While the inertial forces can be obtained via rearranging individual parts of
the original mass matrix – see e.g. [1] – the appearance of separate representations of the inertial
effects in the discretized system equations is computationally inconvenient and complicates the
development of conservative time integration algorithms for rotating structures. This problem
can be resolved by adopting a Hamiltonian view of mechanics, in which displacements and ve-
locities (momentum) appear as independent variables, and therefore are interpolated separately
from their nodal values. Hereby all inertial effects are represented by the classic mass matrix,
and the effects of rotational convection are represented by global operations via vector products
with the angular velocity of the rotating frame of reference.

The nodal displacements and velocities constitute a state-space representation of the local
motion. When the local displacements are combined with the absolute velocities the correspond-
ing hybrid state-space equations of motion take a particularly simple form without the angular
acceleration and with the angular velocity only in linear form. A conservative integration algo-
rithm for the hybrid state-space variables is obtained by using the mean value of the angular
velocity over the current integration interval. For changing angular velocity the conservative
integration format is different from the classic collocation format exemplified by the Newmark
scheme. A damping based on local motion can be introduced by a simple modification of the
coefficients of the state-space integration format.

Lagrange-Hamilton basics

Let a structure be described by a set of generalized coordinates q = [q1, q2, · · · ]
T with time

derivative q̇ = [q̇1, q̇2, · · · ]
T . The Lagrangian functional is then defined by

L =

∫ t2

t1

L(q , q̇ , t) dt (1)
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in terms of the Lagrangian density

L(q , q̇ , t) = T (q , q̇ , t) − V (q , t), (2)

where T (q , q̇ , t) is the kinetic energy, while V (q , t) is a potential. The equations of motion
follow from the variational condition δL = 0, whereby

d

dt

(∂L
∂q̇

)
−

∂L

∂q
= 0 . (3)

In the Lagrangian formulation the variables are the generalized displacements q , and the equa-
tions of motion are second order differential equations in these variables.

The Hamiltonian formulation starts by introducing the term in the parenthesis of (3) as the
independent momentum,

p =
∂L

∂q̇T
. (4)

The Hamiltonian H(q ,p, t) is then defined from the Lagrangian L(q , q̇ , t) by the Legendre
transform

H(q ,p, t) = q̇Tp − L(q , q̇ , t), (5)

where the displacements q and the momentum p are treated as independent variables. The
equations of motion then follow from stationarity in the classic form

dp

dt
= −

∂H

∂qT
,

dq

dt
=

∂H

∂pT
. (6)

The important observation in the present context is that by introducing the additional conjugate
variable p, the original set of second order differential equations are transformed into a set of
first order equations in q and p. The symmetric form of the Hamiltonian equations suggest
representation of these independent variables by identical interpolation schemes.

Rotating structures

A rotating structure is illustrated in Fig. 1. The position of the nodes are described by the
coordinates xn in a frame of reference rotating with angular velocity Ω . A generic point with
internal coordinate ξ is the given in the local frame in terms of the coordinates of the nodes as

x ξ = N (ξ)︸ ︷︷ ︸
3×N

xn. (7)

The issue here is the representation of the corresponding velocity.

x1

x2

x3

Ω

Figure 1. Solid body in frame {x1, x2, x3} rotating with angular velocity Ω.
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Classic representation

The classic approach is Lagrangian in the sense that the local components of the global velocity
v ξ is obtained at the generic point x ξ as an absolute time derivative, combining the local velocity
and a convective velocity from the rotation of the frame of reference,

v ξ = Dtx ξ = (∂t + Ω̃)x ξ, (8)

where the notation Ω̃ = Ω× is used for the skew symmetric matrix representing the vector
product. The kinetic energy is given in terms of the absolute velocity as

T =

∫
V

1

2
ρ vT

ξ v ξ dVξ. (9)

The absolute velocity depends on the local nodal velocity ẋn and the local position xn and
substitution from (8) gives the discretized form

T = 1

2
[ẋT

n ,x
T
n ]

[
M 00 M 01

M 10 M 11

][
ẋn

xn

]
, (10)

where the block matrices M jk are defined by

M jk =

∫
V

ρN (ξ)T
(
Ω̃

T )j
Ω̃

k
N (ξ) dVξ . (11)

It is seen that the angular velocity Ω is imbedded inside the volume integral. For elements that
are not based on identical interpolation of all three displacement components – essentially all
non-isoparametric elements – moving the angular velocity vector outside the integral requires
some measure of restructuring of the mass matrix. In cases with time-dependent angular velocity
this formulation therefore involves reassembly of the inertial matrices containing Ω as well as
terms representing the time derivatives of these matrices.

Hamiltonian representation

In the Hamiltonian formulation the generalized displacement vector x is supplemented by the
corresponding momentum vector, defined via (4). The present paper is concerned with formu-
lations in which the mass matrix is constant. This class includes isoparametric elements and
elements that can be constructed using a definition of generalized strains as a quadratic function
of the generalized displacements. The latter group includes energy-consistent moderate-strain
formulations of e.g. beams, plates and shallow shells. When the mass matrix is constant the
momentum vector can be replaced by the nodal velocity vector. The absolute velocity at a
generic point ξ then follows from the interpolation format (7) as

v ξ = N (ξ)vn = N (ξ)Dtxn. (12)

In this format the velocity interpolates the nodal values obtained via the convected differential
operator Dt = �∂t+ Ω̃� = ∂t+ Ω̃D, now extended to global form by defining the block diagonal
matrix Ω̃D = �Ω̃ , · · · , Ω̃�. This format gives the kinetic energy in terms of the mass matrix as

T = 1

2
[ẋT

n ,x
T
n ]

[
M MΩ̃D

Ω̃
T

DM Ω̃
T

DMΩ̃D

][
ẋn

xn

]
, (13)

and thus the inertial loads from convection are obtained from global operations on the assembled
mass matrix M .
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Equations of motion

The equations of motion can be expressed in several different forms. While the particular form
may be less important when discussing the exact continuous case, the choice of format is a
central issue in the development of discrete time integration algorithms. In the following only
the discretized form is used, represented in terms of the nodal values, and the subscript n is
therefore omitted.

Lagrangian form with classic interpolation

The equations of motion in the second-order Lagrange format (3) follow directly from differen-
tiation of the discretized kinetic energy (10) and a potential V (x ) giving external forces f and
internal forces g(x ). The result is the classic equation

M 00ẍ + (M 01 −M 10)ẋ − M 11x + Ṁ 01x + g(x ) = f . (14)

In the case of isoparametric elements the angular velocity may be applied to the assembled mass
matrix, and the equation takes the somewhat more intuitive form

Mẍ + (MΩ̃D + Ω̃DM )ẋ + Ω̃DMΩ̃Dx + M
˙̃
ΩD + g(x ) = f . (15)

The second term is the gyroscopic or Coriolis force, the third is the centrifugal force, and the
fourth term is the effect of angular acceleration. Even this special form, where the angular
velocity has been extracted to the global format, does not lend itself immediately to energy
conserving time integration because angular acceleration appears directly in the equation and
the angular velocity appears in quadratic as well as in linear form. This dynamic equation is
typically integrated by classic collocation schemes of collocation type, se e.g. [2].

Hybrid state-space format

The hybrid state-space format appears naturally, when observing that for the present problem
p = Mv , and thus a natural variable combination is the local displacement x and the global
velocity v . The hybrid state-space equations of motion then take the form, [3],[

0 M

−M 0

][
u̇

v̇

]
+

[
g(u) + Ω̃DMv

MΩ̃
T

Du + M v

]
=

[
f

−MΩ̃
T

Dx 0

]
. (16)

where the displacements have been introduced as the difference between the current and the
initial position, u = x − x 0. These equations appear as a simple generalization of the classic
state-space equations, e.g. [4], augmented by two linear terms in the angular velocity Ω . The
hybrid state-space equations lend themselves directly to energy conserving time integration
and permit a simple monotonic algorithmic damping scheme. This format is easily extended
to models in which rotations are represented in quadratic form in terms of the generalized
displacements, [5].

Conservative time integration

Conservative time integration algorithms are typically obtained from a time integral of the state-
space equations of motion – in the present case (16). For structures with constant mass matrix
the fist term changes directly into a similar term with the time increments of the state-space
variables, Δu and Δv . The issues to be resolved lie in the second term, which now represents
a ‘mean value’ over the time integration interval Δt. It has been demonstrated in [3] that
conservation properties are attained when the angular velocity Ω is represented by its algebraic
mean value of the initial and final values of the integration interval Ω̄ . In most problems
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involving rotating bodies or structures the stiffening effect from stresses due to the centrifugal

load play an essential role in balancing the direct centrifugal load term Ω̃
T

DMΩ̃D to a greater
or lesser extent, and geometric stiffness is therefore an important aspect of the problem. For
elements with a quadratic strain measure, as in the present case, the effect of the kinematic
non-linearity can be accounted for by the following simple result for the representative mean
value of the internal forces, [4],

g(u)∗ = g(u) − 1

4
ΔK gΔu , (17)

where ΔK g is the increment of the geometric stiffness matrix over the time interval Δt. In spite
of the fact that this term formally is a ‘higher order term’ it is important for consistency and
accuracy in problems depending on geometric stiffness.

When these two results are incorporated, the integrated form of the state-space equations of
motion take the form[

1

4
ΔtΔK

g M

−M 0

][
Δu

Δv

]
+ Δt

⎡
⎣ g(u) + ¯̃

ΩDMv̄

M
¯̃
Ω

T

Dū + M v̄

⎤
⎦ = Δt

[
f
∗

−M
¯̃
Ω

T

Dx 0

]
. (18)

A local form of the energy balance can be obtained by expressing the absolute velocity v in
terms of the local velocity u̇ from (8). Multiplication of the hybrid state-space equations (18)
by [ΔuT ,ΔvT ] leads to the following energy increment equation, [5],[

1

2
u̇TMu̇ − 1

2
xT (Ω̃

T

DMΩ̃D)x +G(u)
]n+1

n
+ vTM (ΔΩ̃Dx ) = ΔuT f

∗
, (19)

where G(u) = ΔuTg(u) is the increment of the internal energy, and ΔuT f
∗
defines the work of

the external force. The mean value term gives a direct representation of the contribution from
angular acceleration within the time increment.

Local algorithmic damping

It is often desirable to introduce dissipation – partly to represent actual damping in the struc-
ture, and partly to dissipate high-frequency response components that are above the Nyquist
frequency limit for reproduction of a continuous signal by its time-discretized counterpart. A
convenient way of identifying a suitable format for algorithmic damping is to identify a desirable
form of its dissipative contribution D to the energy balance equation. It has been demonstrated
that for a stationary structure a suitable dissipation function is a quadratic form in the incre-
ments of the state-space variables, D = 1

2
(Δu̇TMΔu̇+ΔuTKΔu), whereK is a representative

value of the stiffness matrix, [4]. In the present context it is desirable to formulate the dissipation
in terms of local velocity u̇ in order for a purely convective rotation to be undamped. Further-

more, as seen from the energy balance equation, the local stiffness is reduced by Ω̃
T

DMΩ̃D.
Thus, a suitable form of the dissipation potential in the present case is, [5],

D = 1

2
α
{
Δu̇TMΔu̇ +ΔuT (K − ¯̃

Ω
T

DM
¯̃
ΩD)Δu

}
. (20)

The algorithm is formulated in terms of the absolute velocity v . The local velocity u̇ is therefore
eliminated in favor of the absolute velocity via the relation (8), whereby the dissipation potential
takes the simple matrix form

D = 1

2
α
[
ΔuT ,ΔvT

] [ K
¯̃
ΩDM

M
¯̃
Ω

T

D M

][
Δu

Δv

]
(21)

When introducing −D on the right side of the total energy balance equation, it is seen that
the matrix including the factor 1

2
α should be included in the first matrix of the conservative
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equations of motion (18). Hereby the discretized hybrid state-space equations take the final
form[

1

4
ΔtΔK g + 1

2
αΔtK (I + 1

2
αΔt

¯̃
ΩD)M

M (−I + 1

2
αΔt

¯̃
Ω

T

D)
1

2
αΔtM

][
Δu

Δv

]
+Δt

[
g(u)+ ¯̃

ΩDMv̄

M
¯̃
Ω

T

Dū +Mv̄

]
= Δt

[
f
∗

−M
¯̃
Ω

T

Dx 0

]
.

(22)
It is noted that the the damping terms proportional to parameter α contribute in the form
of symmetric terms in the first matrix. The combination of terms in the upper left corner of
this matrix also indicates that the contribution 1

4
ΔK

g has the form of a damping term. As
the increment of the geometric stiffness may change sign, omission of this term by a simplified
integration of the non-linear internal forces would lad to oscillations as illustrated in [4].

The non-dimensional damping parameter α appearing in the equations of motion can be
related asymptotically to the modal damping ratio ζk in the low-frequency regime, [6],

ζk ∼ 1

2
α (ωkΔt) (23)

Thus, for the lower modes algorithmic damping in terms of the scalar damping parameter α

leads to damping proportional to the modal frequency ωk.

Numerical solution

The numerical solution of the hybrid state-space equations (22) proceeds in a simple step-by-step
manner. First the equations are reformulated by using he second equation to express the current
velocity vn in terms of the current displacement un. This expression is used to eliminate the
current velocity vn from the first equation, which then takes the form of a modified non-linear
quasi-static static problem, for which standard solution procedures are available. When un has
been determined, the current velocity vn is determined from the relation used to eliminate this
variable in the first step. Convergence is usually good due to the presence of the inertial terms
that typically exercise a stabilizing effect for small time steps. Details and examples may be
found in [4], [3] and [5].
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Summary. In this plenary lecture some results on the adaptive construction of reduced finite element
models are presented. In particular we focus on the Craig-Bampton component mode synthesis method
and develop a posteriori error estimates and adaptive algorithms for a basic model problem, the elliptic
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Introduction

The finite element method has a long tradition of use in solid mechanics and is commonly the
method of choice for solving problems in elasticity. Sometimes however, finite element models
may prove to be too computationally expensive to use in practical applications. In particular this
may be the case when solving certain time dependent problems, large scale eigenvalue problems,
or in frequency response analysis of complex structures. In such instances it may instead be
preferable to construct a reduced finite element model with much fewer degrees of freedom off
line, and use this less expensive model in the on line simulation. This process is commonly
referred to as model reduction, reduced order modeling, or model order reduction.

In model reduction the objective is to find a low dimensional subspace of the finite element
function space that still captures the solution to a sufficient degree of accuracy. To accomplish
this, model reduction commonly relies on the incorporation of certain a priori knowledge in the
model. For instance, if one is interested in the behavior of an elastic body in some specific
frequency range, a low dimensional subspace that captures this behavior may be defined by
using a basis of elastic eigenmodes vibrating in that same frequency range. Likewise, if it is
known that forces act on a body in a certain region, basis functions designed to capture these
forces may be included in the basis. As a result of the incorporation of knowledge in the model,
its generality is decreased. This poses a limitation in instances where for example load patterns
are very general, or changing over time, or if the dominating frequency range is very broad. In
such instances it may be favorable to be able to evaluate a coarse model first, register where
for example loads occur, and then update the reduced model to incorporate the a posteriori
knowledge obtained, i.e. construct the reduced model adaptively. In this plenary lecture we
discuss how this can be accomplished for reduced models in general, and in particular the Craig-
Bampton component mode synthesis method (CB-CMS). We develop adaptive algorithms based
on duality based a posteriori error estimates for CB-CMS applied to a basic model problem [3],
the elliptic eigenvalue problem [4], and the frequency response problem [5]. See also [6].
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The elliptic eigenvalue problem

Continuous model

Let Ω be a domain in space with boundary ∂Ω occupied by a homogeneous isotropic elastic
material. Assume that the boundary consists of two disjoint parts ΓN and ΓD, where the body
is traction free on ΓN , and no displacements occur on ΓD.

If the strains or deformations within Ω are small (infinitesimal), the resonance frequencies
of the body are obtained by solving an eigenvalue problem for the unknown eigenpairs (λ,u)

−ρλu−∇ · σ(u) = 0, x ∈ Ω, (1a)

u = 0, x ∈ ΓD, (1b)

n · σ(u) = 0, x ∈ ΓN , (1c)

where u = u(x, t) are the vector displacements, σ(·) is the stress tensor, and ρ = ρ(x) denotes
density. Further, stress is described in terms of the Cauchy strain tensor ε(u) = 1/2(∇u+∇uT )
through Hooke’s law, which may be written σ(u) = 2με(u) + κ(∇ ·u)I, for isotropic materials.
Here μ and κ are the Lamé material parameters, and I is the identity tensor.

Finite element model

Let the domain Ω be partitioned into simplices, and let V h be the space of continuous piecewise
polynomials on the mesh. The finite element method for the eigenvalue problem reads: find
(λh,U) ∈ R× V h, such that

a(U ,v) = λh(U ,v), ∀v ∈ V h, (2)

where a(·, ·) is the bounded, coercive, bilinear form

a(w,y) = (σ(w), ε(y)), ∀w,y ∈ V h. (3)

Reduced model

Let V h,m ⊂ V h be a low dimensional subspace. We then seek (λm,Um) ∈ R× V h,m, such that

a(Um,v) = λm(Um,v), ∀v ∈ V h,m. (4)

The challenge is to construct the subspace V h,m ⊂ V h in such a way that it is low dimensional
while still maintaining good approximation properties for the problem at hand. There are of
course many ways to construct the reduced space. Below we briefly describe the Craig-Bampton
method.

Craig-Bampton component mode synthesis

Below follows a brief description of the Craig-Bampton component mode synthesis method [2]
in a variational setting [1].

Consider a domain Ω for simplicity partitioned into two subdomains Ω1 and Ω2 interfacing
at Γ. A decomposition of V h associated with the partition may be constructed by defining
subspaces V h

i ⊂ V h associated with Ωi, by V h
i = {v ∈ V h : v|Ω\Ωi

= 0}, i = 1, 2, and a

subspace V h
0 associated with Γ, by V h

0 = {Eν ∈ V h : ν ∈ V h|Γ}, where V h|Γ denotes the
restriction of V h to Γ and Eν ∈ V h denotes the harmonic extension of a function ν ∈ V h|Γ to
Ω. That is, Eν is defined by the problem: find Eν ∈ V h, such that

a(Eν,v) = 0, ∀v ∈ V h
i , i = 1, 2, (5)

Eν|Γ = ν. (6)
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With the V h
i , i = 0, 1, 2, defined as above, it follows that an a-orthogonal decomposition of V h

is given by

V h =

2⊕
i=0

V h
i . (7)

For each subspace V h
i , i = 0, 1, 2, an eigenvalue problem is defined: find (λi, zi) ∈ R× V h

i , such
that

a(zi,v) =λi(zi,v), ∀v ∈ V h
i , (8)

A basis for each V h
i , is then given by V h

i = span{zi}ni
i=1

, where ni is the dimension of V h
i . By

truncating the bases, reduced subspaces V h,mi
i , i = 0, 1, 2, are obtained. That is, let V h,mi

i be

defined by V h,mi
i = span{zi}mi

i=1
, where mi < ni. A reduced space V h,m, where m = (mi)

2
i=0 is

then defined by

V h,m =
2⊕

i=0

V h,mi
i . (9)

A posteriori error estimation and adaptivity

Error estimates

Let Rh
i (W , γ) ∈ V h

i denote the discrete subspace residual defined for (γ,W ) ∈ R× V h by

(Rh
i (γ,W ),v) = a(W ,v)− γ(W ,v), ∀v ∈ V h

i . (10)

Then the estimate

λm − λh = ≤ cλh
√

2I2, (11)

holds for the reduction error in the eigenvalue λm, and

|||E||| ≤ c
(√

I1 + S(λh)
√
2I2

)
, (12)

holds for the reduction error in an eigenmodeUm, where I1 = I1(λ
m,Um) and I2 = I2(λ

m,Um)
respectively, are defined by

I1(λ
m,Um) =

n∑
i=0

1

Λi,mi+1

‖Rh
i (λ

m,Um)‖2, (13)

I2(λ
m,Um) =

n∑
i=0

1

Λ2
i,mi+1

‖Rh
i (λ

m,Um)‖2, (14)

and S(λh) is a stability factor defined by

S(λh) = max
λh
j �=λh

λh
√
λh
j

|λh − λh
j |
. (15)
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Adaptive algorithm

An adaptive algorithm based on the above estimate with the objective of accurately computing
an eigenvalue or eigenmode may take the form:

1. Start with a guess of the subspace dimensions m.

2. Solve the problem (4) for the displacements Um.

3. Compute the error indicators ηi = ‖Rh
i (λ

m,Um)‖2/Λi,mi+1 and use them together with
a refinement rule to decide suitable levels of refinement in each subspace.

4. Repeat steps 2–4 until satisfactory results have been obtained.

Numerical results
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Figure 1. Semilog plots of the eigenvalue error E = λm
10

− λh
10

and the energy norm of eigenmode error
E = (I − Pλh)Um

10
together with the corresponding estimates vs. the number of DoF, as the adaptive

algorithm proceeds. Legend: error, square; estimate, circle.
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Standard gradient models and gradient plasticity 
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Summary. The standard gradient models have been intensively studied in the literature, cf. 
Fremond (1985) or Gurtin (1991) for various applications in plasticity, damage mechanics and 
multi-phase analysis. The governing equations for a solid have been introduced essentially from 
an extended version of the virtual equation. It is shown here that these equations can also be 
derived from the formalism of energy and dissipation potentials and appear as a generalized 
Biot equation for the solid. For a time-independent process such as incremental plasticity or 
brittle damage, our attention is focussed on the derivation of the governing equations of the 
global response and of the rate response, on the associated variational principles and on some 
general results such as the question of uniqueness for a solid submitted to a quasi-static loading. 
A consistent mathematical description of the theory of Gradient Plasticity is given.  

Key words: gradient plasticity, extended virtual equation, dissipation potential 

Introduction 

The introduction of the gradients of the state variables such as the strain, the internal parameter 
and even the temperature in Solid Mechanics has been much discussed in the literature since the 
pioneering works of Mindlin and Toupin in second-gradient elasticity. Especially, in the two 
last decades, standard gradient theories has been considered in many papers, cf. for example 
[12], [14] , [26], [17], [30], [9], for the modeling of phase change and of solids with 
microstructures. In particular, in Fr´emond or Gurtin’s approach, the governing equations have 
been originally derived from an additional virtual work equation. These models have been 
applied in various applications such as gradient plasticity and gradient damage. 

The objective of this paper is to revisit the proposed approach. Using the formalism of the 
generalized standard materials [28], a dissipation analysis is considered in order to derive the 
general expression of the governing equations for the internal parameters in terms of the energy 
and dissipation potentials. Gradient and higher-gradient models can be discussed in the same 
spirit. In particular, the governing equations for the standard gradient models can be written as a 
generalized Biot equation for the solid. For a time-independent behaviour such as incremental 
plasticity or brittle fracture or brittle damage, our attention is focussed on the derivation of some 
theoretical results, which are well known in classical plasticity, such as the governing equations 
of the global response and the determination of the rate response and the associated variational 
principles. A consistent mathematical description of the theory of Gradient Plasticity is 
proposed 
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Summary. This contribution describes some recent developments in computational homogenization and
the resulting FE2-strategy, both from a conceptual viewpoint and with respect to selected applications.

Key words: homogenization, variationally consistent, discretization-based, model-based, scale-bridging

Introduction

One of the fastest growing research fields in the international solid mechanics community is
multiscale material modeling, ranging from the quantum to the continuum level, [2]. From an
engineering viewpoint, the challenge is to model the physics on the ”appropriate” (sub)scale
while extracting the output on the macroscale with sufficient accuracy. Hereby, a classical
concept is (analytical or mathematical) homogenization. For linear and static response this
operation can be done once and for all, socalled upscaling; however, for nonlinear and non-
standard problems the homogenization is not (entirely) trivial.

Concept of variationally consistent homogenization

In this contribution we review some recent developments, primarily within our research group,
related to scale transition involving computational homogenization on a Representative Volume
Element (RVE). A key concept is ”variationally consistent homogenization” (VCH), which is
closely related to the well-established paradigm of Variational Multiscale Modeling, [1]. The
VCH-concepts leads naturally to ”discretization-based” homogenization, whereby the order of
homogenization is determined by the polynomial order of the macro-scale element approximation
(and is not determined a priori as a model assumption), [3], [4]. However, the link to the
classical ”model-based” homogenization (of any given order) is also discussed. We illustrate the
developments in tutorial fashion for a simple model problem, before giving the more abstract
general setting that holds for a large class of problems in space/time. In any case, when only
a single subscale is involved, the resulting computational strategy is known as FE2. Examples
of (still) outstanding issues are: choice of efficient prolongation (boundary) conditions on the
RVE, bounds on the effective properties from ”virtual testing” statistics, ”equation switching”
from subscale to the macroscale, etc. Applications to materials within our research group range
from graphene (atomistic subscale) to porous granular media (particle/matrix composite with
pore fluid seepage).

Within the paradigm of VCH we also discuss a strategy for bridging the two extremes
of complete scale separation (based on RVE-computations) and single-scale resolution. Such
bridging is accomplished adaptively in a virtually ”seamless” fashion, and it is based on the aim
to control discretization as well as model errors.
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Application problems

We present computational results from some ”standard” and ”non-standard” homogenization
problems. As a standard problem, we consider deformation of a polycrystalline metal (such
as Duplex Stainless Steel). As examples of non-standard problems we consider the liquid-phase
sintering of a P/M-component, seepage in a porous medium (which represents equation switching
from the meso- to the macroscale) and atomistic modeling of graphene. In the latter case the
Quasi-Continuum method is employed, whereby model adaptivity is a key feature. Finally, we
consider the problem of a sharp crack in a particle composite within the realm of a scale-bridging
strategy.
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[1] T. J. R. Hughes, G.R. Feijóo. L. Mazzei and J-B. Quincey: The varaiational multiscale
method - a paradigm for computational mechanics. Comput. Methods in Applied Mechanics
and Engineering, 166:3-24, 1998.

[2] M. G. D. Geers, V. G. Kouznetsova, and W. A. M. Brekelmans: Multi-scale computa-
tional homogenization: Trends and challenges. J. Computational and Applied Mathematics,
234:2175-2182, 2010.

[3] F. Larsson and K. Runesson: Adaptive bridging of scales in continuum modeling based on
error control. Int. J. Multiscale Computational Engineering, 6:371-392, 2008.

[4] F. Larsson and K. Runesson: On two-scale adaptive FE-analysis of micro-heterogeneous
media with seamless scale-bridging. Comput. Methods in Applied Mechanics and Engineering,
2010 in press.

26



Proceedings of the 24th Nordic Seminar on Computational Mechanics  
J. Freund and R. Kouhia (Eds.)        
© Aalto University, 2011                                                                                                                                                 

Rail- and roadway dynamics – uncoupled and 
coupled analysis 

Nils-Erik Wiberg 

 

Department of Applied Mechanics, Chalmers University of Technology, Gothenburg, Sweden, 
e-mail: nils-erik.wiberg@chalmers.se 
  

SSummary. To understand the physical phenomena and to be able to propose countermeasures/ 
improvements, simulation tools to perform computations of the entire dynamical system 
including subground, track structure and the train have been developed. In particular, effort has 
been devoted to the wave propagation problem related to high-speed trains running at soft 
ground materials. As the speed of the train approaches and exceeds the natural (Rayleigh) wave 
propagation velocity of the ground material, shock waves similar to a sonic boom originate from 
the onrushing train. The computational models and the solution algorithms developed are 
equally applicable to roadway vehicle-structure-underground systems.   
 

Key words: railway, roadway, dynamics, coupled, fem, porous media  

Dynamics for the railway system    

The primary objective of the project has been to extend the capabilities for computational 
modeling, prediction and simulation of the elastic response of the train, track structure and soil 
in the railway system. The problem area contains several computational challenges and requires 
efficient techniques to handle time integration of large-scale problems, infinite domains, non-
linear material responses etc. [1]. In many applications the soil is water saturated and the 
combined action of elastic deformation and flow has to be accounted for. Thus uncoupled as 
well as coupled analysis have been performed. Four main features have been studied:   

1. The integration of three-dimensional rigid body dynamics with finite elements for 
analysis of vehicle – track – subground interaction problems. 

2. In order to reduce unphysical reflections from FE-boundaries in the solution two 
approaches have been developed. A scaled boundary finite element method and a 
Method with an iteracting fictitious layer of visco-elastic elements simulating the 
unbounded surrounding domain. 

3. Adaptive analysis of moving trains over long distances (up to 400m) by moving FE-
mesh calculations.  
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4. Coupled solid-fluid analysis of wave propagation in water saturated soils under high-
speed trains. 

 

      The outcome is an advanced application for vehicle – track – subground interaction 
problems in 3D over long distances [2]. The car, bogies and wheels are treated as rigid bodies 
connected by springs and dampers by use of constraint equations. The wheels of the vehicle are 
connected to the rail by moving constraint equations. The constraint equations give an indefinite 
system of equations.  

Solver based on multi-grid, error estimation and adaptive refinement    

Efficient solvers based on a combination of multi-grid, error estimation and adaptive refinement 
for linear as well as nonlinear cases have been developed to reduce execution times and memory 
requirements. The solution time, using multi-grid PCG-preconditioning, is substantially reduced 
compared to conventional implicit solvers based on factorization. Moreover, the  indefinite 
system of the Lagrange multiplier approach to handle constraint equations requires additional 
preconditioning to guarantee convergence and reduce the number of iterations [3]. 
      It is possible to alter geometry, ground material characteristics, use semi-active suspension 
features as well as study various types of imperfections in the track structure over the course of 
a moving vehicle simulation. Numerical simulations where the train is represented as a 
collection of moving loads as well as a multi-body system with complete train-track interaction 
are demonstrated. 
 

Coupled solid-fluid dynamic analysis of road and railway structures  

The computational models and the solution algorithms developed are equally applicable to 
roadway vehicle-structure-underground systems. The paper also includes studies combining 
elastic deformations and water flow in the ground [4]. A FE-formulation for the dynamic 
behavior of water saturated porous media is  presented. The transient response of a 2D-model of 
a railway to moving traffic loading as well as a wet asphalt pavement loaded by wheel impact 
pressure are studied. Figure 1 shows some results below.  

 

 
 

 

 

 

Figure 1. Simulations of coupled dynamic deformation and water flow (magnified 
deformations, color-scale water-pressure, arrows water-flow): Left: Wet asphalt 
pavement loaded by wheel impact pressure. Right: Train running on water-saturated soil. 
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It is also demonstrated  that the simulations of soft asphalt in the summer season differ a lot 
whether dynamical effects are considered or not, while stiff asphalt during winter is hardly 
not affected at all. In the traffic load example, large magnification of displacements occurs 
for certain vehicle speeds both for porous and solid media theories. 
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Summary. Metal coated micron-sized polymer particles find wide applications in anisotropic 
conductive adhesives. Adhesion between the metal coating and polymer core is crucial for the 
mechanical integrity and electrical performance of the adhesives. In this study molecular 
dynamics simulation has been conducted to investigate the tensile and shear strength of a 
metal�polymer interface.  

Key words: metal-polymer interface, adhesion, molecular dynamics simulations. 

Introduction 

The micron-size monodisperse polymer particles have received great industrial and 
scientific attentions over the past two decades due to a wide variety of applications such 
as toners, instrument calibration standards, column packing materials for 
chromatography, biomedical and biochemical analyses[1-3]. A new area which utilizes 
metal-coated conductive polymer particles for anisotropic conductive adhesives 
applications in liquid crystal display and microsystems[4] has recently emerged. The 
metalized polymer particles have the potential to shrink the package size, reduce 
manufacturing cost, and be lead-free. However, a critical issue of the metal-coated 
polymer particles concerns the adhesion between metal and polymer, which strongly 
affects the resulting mechanical and thermal properties. The adhesion strength, in turn, 
depends mostly on the interface chemistry and interface atomic-scale morphology. The 
strength and reliability of metal-polymer joints are mainly the result of the play of 
forces of intermolecular interaction between metal and polymer. The interaction 
between these condensed bodies at distances on the nano-size refers to a very 
complicated set of inter-connected phenomena that is far from being understood. 
Therefore, the present work uses atomistic simulation to study the tensile and shear 
strength of a Nickel�s-PMMA interface at the molecular level.  
 

Methods and Models 

Usually, the PMMA monomers are connected to form different stereo-regular tacticity.  
In this study, only s-PMMA type chains are built by monomers connected stepwise with 
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proper energy.  Ten polymer chains (the number of C/H/O atoms per chain is 
1000/1602/400) are randomly placed into an amorphous cuboid cell with cell parameter: 
a=b=57.656Å, c=100Å, based on self-avoiding walking method. In order to create 
surface joint with metal, only two periodic boundary conditions (along the x and y 
directions) are imposed in the amorphous cell system. Six nickel atom layers with 
(111) surface contacted amorphous polymer are placed in both ends in the direction z. 
To model the s-PMMA�Nickel interface, the consistent valence force field (CVFF)[5] is 
employed in all our simulations using the open source MD code LAMMPS[6].The 
system is initially energy-minimized using the conjugate gradients method and then 
relaxed by a set of MD simulations: NVT for 100 ps at 300 K� NPT for 100 ps at 
300K � NVT for 200 ps from 300 K to 1000K, nickel atoms are fixed in z direction� 
NVT for 200 ps from 1000K to 300K� NPT for 5ns at 300K. The interface model of s-
PMMA�Nickel at equilibrium state is shown in Fig.1, in which only backbone atoms 
and metal atoms are shown for the sake of clarity. After the equilibrium, a tensile test is 
conducted  by  given  a  constant  velocity  of  nickel  plates  (1m/s  and  -1m/s)  in  the  z  
direction. Similarly, a constant velocity of nickel plates (1m/s and -1m/s)  is given in x 
direction for the shear test. 

 

Results and Discussion 

Equilibrium properties of s-PMMA�Nickel interface 

The polymer chain structures at the two interfacial regions have been analyzed by 
dividing space across the film into parts separated by planes parallel to the solid surface, 
of width equal to around 1 Å. Fig. 2 displays the average mass density and average 
force distributions across the (111) surface for the interface system. Near the nickel 
surface, the density profile exhibits a peak from the highly attractive metal surface, and 
the global mass density of polymer between two metal plates is around 1.1g/cm3.  The 
densified polymer on the metal surface can be attributed to the highly attractive force as 
presenting double two peaks of force near both end surfaces in Fig. 2. The highest peaks 
around 10 Å and 95 Å demonstrate high repulsive force owing to too small average 
distance between surface polymer and metal atoms. The two opposite lower peaks 
around 12 Å and 93 Å represent high attractive force between polymer and metal for 
these two parts. Fig. 3 shows local mass density gradient for interface system at the 
equilibrium state. It is observed that high density gradient locates at the metal surface as 
expected. In the middle region the density gradient is relative small that explains an 
equilibrium state of system has reached.  

 
Fig. 1 The interface atomic model of s-PMMA�Nickel at equilibrium state, only backbone 
atoms and metal atoms are shown for clarity. Different chains are colored to chain number. 
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Tensile strength of s-PMMA�Nickel interface 

Starting from the equilibrated s-PMMA�Nickel system, MD simulations were 
performed to simulate the tensile strength of interface.  Fig. 4a displays the pulling force 
on nickel plate as a function of strain. It is observed that the pulling force increases 
linearly  as  strain  increase  to  5%  strain  for  both  metal  plates,  which  means  the  elastic  
stretch occurs in polymer. Then softening and hardening occurs similar to the bulk 
polymer. Fig 4b displays one snapshot of interface failure at 30% strain. Near the 
surface, cavities can be seen in the ellipses shown in the figure that represent the 
interface failure.  
 
Shear strength of s-PMMA�Nickel interface 

Fig. 5 shows the pulling force on nickel plate as a function of displacement of plate 
together with one snapshot of the interface in the shear test at 50 Å displacements of 
nickel plate. Similar to the tensile test, the pulling force increases linearly as 
displacement of plate increase to 5 Å for both metal plate. A small pop-in occurs and 
then the pulling force continues to increase with a reduced rate until a sudden drop, 
which indicates the failure of s-PMMA�Nickel interface.   

 

 
Fig. 3 Local density gradient at    

equilibrium state 
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Fig. 2  Density and force profile of polymer at   

equilibrium state 
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3.  Shear strength of s-PMMA�Nickel interface 

 
Summary 

Atomistic simulations have been performed to investigate the tensile and shear strength 
of a metal�polymer interface. A densified polymer layer on metal surface has been 
observed due to high interaction between metal and polymer. Cavities can be observed 
near the interface at large strains during tensile test. Interface failure easily occurs at 
only 5 Å displacements of nickel plates during shear test. 
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Fig.4 a. the pulling force on nickel plate as a function of strain. b. Snapshot of interface failure  
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Isogeometric analysis of finite deformation nearly 
incompressible solids  

Kjell Magne Mathisen, Knut Morten Okstad, Trond Kvamsdal and Siv Bente Raknes 

Summary. This paper addresses the use of isogeometric analysis to solve finite deformation solid 
mechanics problems, in which volumetric locking may be encountered. The current work is based on the 
foundation developed in the project ICADA for linear analysis, that herein is augmented with additional 
capabilities such that nonlinear analysis of finite deformation problems in solid mechanics involving material 
and geometrical nonlinearities may be performed. In particular, we investigate two mixed forms based on a 
three-field Hu-Washizu variational formulation, in which displacements, mean stress and volume change are 
independently approximated. The performance of the mixed forms is assessed by studying two numerical 
examples involving large-deformation nearly incompressible elasticity and elastoplasticity. The results 
obtained with NURBS are shown to compare favorable with classical Lagrange finite elements. 
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Analysis-suitable modeling for isogeometric shell analysis
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Summary. The paper presents strategies for producing Computer Aided Design (CAD) models that
are suitable for Isogeometric Analysis (IGA) . By extending traditional CAD tools slightly, complex
analysis-suitable shell models can be produced. It is shown how trimmed objects can be converted to
untrimmed objects. By comparing analysis results of various modeling techniques including T-splines,
the influence of the modeling concept is analyzed.

Key words: isogeometric analysis, analysis-suitable modeling, shells, T-splines, bottom-up modeling

Introduction

In 2005 Hughes and collaborators [3], introduced the concept of IGA to improve the transition
between CAD models and Finite Element Analysis. In order to make use of IGA in the indus-
try, it is necessary to establish guidelines for producing Analysis Suitable Models. The paper
highlights the influence of the chosen modeling strategy on the analysis. We present bottom-
top modeling enhanced by building blocks and show how trimmed objects may be dealt with.
Since general CAD tools do not contain real solid models, a natural approach in simulation is to
address surface models. In the current study the surface models are analyzed with continuum
based shell formulations.

The first section outlines the main problems in modeling for IGA and introduces techniques
to work around the problems in an efficient way. The second section is devoted to the applied
shell theory and its implementation. The results of the analysis are presented in the third
section.

Figure 1. A watertight but inexact representation of an intersection of cylinders with different radii.

Strategies for finding analysis suitable models

Problems with traditional CAD

Traditional CAD tools are built for generating design visually, i. e. the underlying representa-
tion is of minor concern. The concept may have been generally applicable for traditional Finite
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Element Analysis, where meshes of the models were used for analysis. However, when perform-
ing the analysis on the CAD model itself, the way the object is built defines if it is suitable for
analysis. One of the major concerns in modeling for IGA is how to deal with boolean opera-
tions. Some attempts have been made to deal with trimmed surfaces in analysis, Kim et al. [5].
Nevertheless, in most work in IGA trimming is avoided.

Watertight or exact?

In certain cases one has to compromise between a watertight and an exact geometry. In the
model of Figure 1, at least one of the cylinders has to be deformed locally to ensure the overall C0

continuity. Analogous to traditional Finite Elements, the exactness of the intersection may be
improved by increasing the number of control points. When building an exact but not watertight
model, the analysis may be performed by setting additional constraints. The latter approach
was not studied in this work.

Bottom-up strategy

A common approach in the CAD world is to start with the outer boundaries of the object and to
add details later in the process. For IGA analysis suitable models however, a bottom-up strategy
may be more convenient. In that way it is easier to ensure that all neighboring patches match on
their common edges. Incorporating building blocks for advanced features may help to increase
the efficiency of this process. In addition to providing analysis-suitable models, building blocks
may be designed with optimal parameterization for analysis. Figure 2(a) shows a IGA analysis
suitable midship section composed of over 3000 patches. One of the applied building blocks
used during modeling is shown in Figure 2(b). The four patches were automatically constructed
from parameters for the patch width and height and the radius and height of the hole. Another
efficient strategy is to construct patches from the neighbor’s edges and additional curves of the
corresponding topology. The bottom-up strategy enables us to build analysis-suitable models
where built-in blocks may help to avoid trimmed surfaces.

Untrimming trimmed objects

The bottom-up strategy shows one example of how traditionally trimmed objects may be con-
structed in an analysis-suitable way. However for complicated configurations, general construc-
tion tools are difficult to implement directly. In these cases the built-in boolean operations may
be used intermediately to generate non-trimmed objects. The cylinder intersection in Figure 1
was constructed by cutting the intersection curve and the end curves of the object. The single
patches were generated by lofting and swifting the matching end curves.

T-splines

When modeling with T-splines, many problems of traditional CAD systems are automatically
dealt with. In general, objects are represented by a single patch so that inter-patch continuity
is not an issue. In addition to that, T-junctions make it possible to delete single knot spans
from T-spline geometries. Figure 2(c) shows a T-splines alternative for connecting cylinder of
different radii. A portion of the basic cylinder was removed after refining around the connecting
cylinder. Finally, the connecting cylinder was merged to the hole. The smooth transition in the
intersection region is a typical characteristic of T-splines. To ensure a tight transition region,
the generated hole has to surround the circular shape of the entering cylinder closely. T-splines
enables local refinement that may be an advantage in both modeling and analysis.
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(a) Frame part of a ship section.

(b) Untrimmed plate with hole.

(c) T-spline cylinder intersection.

Figure 2. Examples of analysis suitable models.

Shell theory

A number of shell models are available in the literature. The classical and enhanced shell
theories are based on surface models. The Kirchhoff-Love three-parameter shell model and
the five-parameter Mindlin-Reissner shell model1 are in wide use and have also been pursued
within IGA. The former poses a challenge in a classical Finite Element setting due to the C1

requirements on the displacement field. IGA enables higher order continuity and the Kirchhoff-
Love model has re-emerged in analysis, especially in nonlinear problems and in rotation free
form, Kindle et al. [4], Benson et al. [2]. The use of Mindlin-Reissner models has also been
reported, Benson et al. [1] and Skeie et al. [6]. In the current work we use the formulation in
Skeie et al. [6] which resembles the higher order shell elements found in commercial packages.

Results

Figure 3(a) shows two approaches for modeling a cylinder intersection of 90 degrees. The first
model is an analysis suitable representation of a simple boolean operation, as described for
Figure 1. The second model was generated with a pipe command from the T-spline plug-in for
Rhino. The anlysis was performed by fixing the underlying cylinder and subjecting the entering
cylinder to an upward force. The T-spline model was converted to a NURBS model. The results
in the Figures 3(b) and 3(c) show a significant lower stresses for the smoother transition.

1also denoted shear deformable shell model
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(a) Overlap of T-spline and NURBS model
of a cylinder intersection.

(b) Deformation and von Mises
stress distribution around a
sharp transition.

(c) Deformation and von Mises
stress distribution around a
smooth transition.

Figure 3.
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Summary. We present herein a family of isogeometric plate elements suitable for solving Kirchhoff-Love
thin plate problems. The fourth order Kirchhoff-Love thin plate theory is characterized by requiring C1

continuous transversal displacements w. This is a challenge for traditional finite elements (FE) methods
and has typical been circumvented by introducing rotational degrees of freedom, that adds complexity to
the FE-formulation. However, the isogeometric FE approach is well suited to handle problems of higher
regularity as the B-spline or NURBS typically facilitate Cp−1 regularity. Thus, isogeometric elements
with p ≥ 2 may solve Kirchhoff-Love thin plate problems with only transversal displacements.

Key words: thin plates, C1 finite elements, isogeometry

Introduction

The maritime and offshore structures are often characterized by being thin-walled, i.e. that the
thickness of structural elements like plates and shell are small compared to the in plane size of
the element. A plate is a plane structural element whereas shell is non-planar, i.e. plates may
be consider a special (or simplified) type of shells. In the ICADA project we aim for developing
isogeometric finite elements suitable for analysing maritime and offshore thin walled structures.
Our goals include both small (infinitesimal) and finite deformation finite element models for both
plates and shells, and we find it natural to start out by developing isogeometric plate elements
for small (infinitesimal) deformations.

For small (infinitesimal) deformations of plates we may use linear plate theories where we
have decoupled the in-plane and out-of plane (transversal) deformation modes. Kirchhoff-Love
theory is the common approach to solve thin plate problems involving pure transversal deforma-
tions. It may be consider as the natural 2D extension of the Euler-Bernoulli 1D beam theory.
It may also be looked upon as a reduced order model, i. e. a 2D theory for representing a
3D elastic continua with one dimension (the thickness direction) much smaller than the two
others. Given a hexahedral solid denoted Ω and let l = min{lx, ly} be the characteristic length
parameter for the in-plane size of the plate, whereas t = lz be the thickness in the normal to
the plane direction. We assume here that the thickness t is constant. Then, the Kirchhoff-Love
thin plate theory is assumed to be valid for t/l ≤ 1/10.

The mathematical formulation

The Kirchhoff-Love hypothesis implies that the 3D displacement field has the form:

uα(x1, x2, x3) = uα(x1, x2, 0)− x3
∂w(x1, x2, 0)

∂xα
; α = 1, 2 (1)

u3(x1, x2, x3) = w(x1, x2, 0) (2)
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Herein, we will only address transversal loaded thin plates with small deformations and therefore
we only need to determine the transversal displacement of the mid-surface w := w(x1, x2, 0).

The governing equation (PDE) for a homogeneous isotropic Kirchhoff-Love thin plate of
constant stiffness D, is the following biharmonic partial differential differential equation (PDE):

D∇4w = q in Ω (3)

w = w̄ on ∂ΩDw (4)

∂w

∂n
= θ̄ on ∂ΩDθ

(5)

M(w) = M̄ on ∂ΩNM
(6)

Q(w) = Q̄ on ∂ΩNQ
(7)

The biharmonic operator ∇4 = ∇2∇2 is given by

∇4 ≡ ∂4

∂x4
+ 2

∂4

∂x2∂y2
+

∂4

∂y4
(8)

and is of order 2m where m = 2. In general for PDEs we do have m different Dirichlet
boundary conditions (BCs) and m different Neumann BCs. The Dirichlet BCs are applied

to w, ∂w∂n , ...,
∂m−1w
∂nm−1 . Thus for thin plates up to first order normal derivatives (n is the outer

normal for the plate boundary), see Equations (4) and (5). The Neumann BC are respectively
for normal moment in Equation (6) and for shear force in Equation (7).

The corresponding finite element formulation is as follows: Find wh ∈ Wh ⊂ W such that

a(wh, vh) = l(vh) ∀vh ∈ Vh ⊂ V (9)

where the bilinear form a(·, ·) and the linear form l(·) is given by:

a(wh, vh) = (D∇2wh,∇2vh)Ω (10)

l(vh) = (q, vh)Ω + (M̄, vh)∂ΩM
+ (Q̄, vh)∂ΩQ

(11)

The inner product is defined as follows:

(u, v)Γ =

∫
Γ

u · v dΓ (12)

Proper function spaces for respectively the trial displacements w and the test displacements
v are as follows:

W =

{
w ∈ H2(Ω) | w = w̄ on ∂Ωw and

∂w

∂n
= θ̄ on ∂Ωθ

}
(13)

V =

{
v ∈ H2(Ω) | v = 0 on ∂Ωw and

∂v

∂n
= 0 on ∂Ωθ

}
(14)

In isogeometric FE methods we introduce splines as basis functions. The most common
spline bases are tensorial either defined by B-splines or NURBS. Herein we will use B-splines
as well as locally refined B-splines denoted LR B-splines. Tensorial 2D B-splines of polynomial
order p in x-direction and q in y-direction and regularity Cr in x-direction and Cs in y-direction
may be written as follows:

Sr,s
p,q(ξ, η) =

m∑
i=1

n∑
j=1

φr
i,p η

s
j,q (15)

When we do local refinement (LR B-splines) we loose the tensorial character of the splines space.
Hence, we introduce the following notation for our splines space herein: Sr

p . Thus, we assume
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the same polynomial order and regularity in both coordinate directions. Proper function spaces
for respectively the FE trial displacements wh and the FE test displacements vh to achieve
compatible FE spaces are as follows:

Wh(Ω) =
{
wh ∈ W(Ω) | wh(F

−1(x1, x2)) ∈ Sr
p(ξ, η)

}
(16)

Vh(Ω) =
{
vh ∈ V(Ω) | vh(F−1(x1, x2)) ∈ Sr

p(ξ, η)
}

(17)

where the coordinate mapping F is assumed to be an onto and invertible mapping between the
parameter domain � and the true domain Ω i.e. for any (x1, x2) ∈ Ω there exist (ξ∗, η∗) ∈ �
such that (x1, x2) = F (ξ∗, η∗).

Numerical examples

To test the spline-based Kirchhoff–Love plate element, we consider an example with known
analytical solution. Figure 1 shows a simply supported rectangular plate subjected to a partial
pressure load on a rectangular region of dimension c× d centered at x = ξ, y = η.

The analytic thin-plate solution to this problem may be obtained by expanding the load into
a Fourier-sine series. The resulting expressions for the transverse displacement and associated
bending moments may then be written as [1]:⎧⎪⎪⎨

⎪⎪⎩
w

Mxx

Myy

Mxy

⎫⎪⎪⎬
⎪⎪⎭ =

∞∑
m=1

∞∑
n=1

pzmn

(α2
m + β2

n)
2

⎧⎪⎪⎨
⎪⎪⎩

1

D sinαmx sinβny
(α2

m + νβ2
n) sinαmx sinβny

(β2
n + να2

m) sinαmx sinβny
(ν − 1)αmβn cosαmx cosβny

⎫⎪⎪⎬
⎪⎪⎭ (18)

where αm = mπ
a , βn = nπ

b , and

pzmn =
16pz
mnπ2

sinαmξ sinβnη sinαm
c

2
sinβn

d

2
(19)

These expressions may then be used to assess the accuracy of the FE solution both point-
wise and globally through an energy norm. If Figure 2 we plot the convergence of the energy
norm error ‖e‖ =

√
a(w − wh, w − wh) for the case c = d = 0.4 for four different simulations.

The adaptive simulations are based on LR B-spline discretizations, whereas for the uniform
refinement simulations we use tensorial B-splines. The distribution of the computed bending
moments on the finest adaptive cubic mesh is shown in Figure 3.
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Figure 1. Simply supported rectangular plate with partial pressure load.
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Figure 2. Simply supported rectangular plate with partial pressure load: Convergence of the global
relative error for the case c = d = 0.4 for two adaptive simulations (AMR) and two uniform refinement
simulations (UMR), using quadratic (p = 2) and cubic (p = 3) spline elements.

Figure 3. Simply supported rectangular plate with partial pressure load: Bending moment distributions
for the case c = d = 0.4 on the finest adaptive cubic mesh.
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Summary. In this paper, we investigate adaptive refinement using the newly invented locally refined
B-splines (LR B-splines). The main idea is illustrated through idealized examples and its performance
are tested on classical benchmark elliptic problems.

Key words: isogeometric analysis, LR B-splines, adaptive refinement

Introduction

The new paradigm of Isogeometric analysis, which was introduced by Professor Thomas J.
R. Hughes and coworkers, demonstrates that much is to be gained with respect to efficiency,
quality and accuracy in analysis by replacing traditional Finite Elements by volumetric NURBS
elements. However, NURBS are not flexible enough to be a common basis for future CAD and
FEA due to the lack of local refinement. The proposed LR B-splines by Dokken et. al [1] have
the potential to form a better framework for future interoperable CAD and FEA systems.

Dokken et. al [1] describes how to manipulate the basis functions when inserting knot lines.
However, there are a number of options regarding choosing which knot lines to use for refinement
purposes. The inserted knot lines must at least entirely split an existing basis function, which
puts a minimum length requirement on it, but there is no maximum requirement. As it turns
out, we have several options available when doing the refinement. Not only of the length and
position of the knot lines, but also their multiplicity as splines open for duplicate knots.

Adaptive finite element method

Many problems in science and engineering may be addressed by solving a variational problem.
The existence and uniqueness of the solution is guaranteed by the Lax-Milgram theorem; Given
a Hilbert space V , a continuous, coercive bilinear form a(·, ·) and a continuous linear functional
l ∈ V ∗ where V ∗ is the dual space to V , there exists a unique u ∈ V such that

a(u, v) = l(v) ∀v ∈ V. (1)

The Galerkin Finite Element (FE) approximation to this variational problem may then be given
as follow: Given Vh ⊂ V and l ∈ V ∗, find uh ∈ Vh such that

a(uh, v) = l(v) ∀v ∈ Vh. (2)

For cases when the bilinear form a(·, ·) is selfadjoint the FE-solution uh is the optimal solution
to the analytical solution u measured in the “a-norm” (i.e. “energy-norm” symbolized with E):

||u− uh||E =
√

a(u− uh, u− uh). (3)
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Assume that we addressing self adjoint elliptic problems of second order (e.g. Poisson or
linear elasticity), then if the analytical solution is sufficiently smooth, i.e. u ∈ Hp+1, and the FE
mesh Mh is regular and quasi-uniform, the error in the approximate FE-solution on a family of
refined meshes {Mh}, is bounded by (see Kvamsdal and Okstad [2])

||u− uh||E = Chp||u||Hp+1 (4)

where C is some problem-dependent constant, h is the characteristic size of the finite elements, p
is the degree of the largest complete polynomial in the FE basis functions and ||u||Hp+1 denotes
the Sobolev norm of order p+ 1.

For problems where the solution is not sufficiently smooth, u �∈ Hp+1, e.g. problems with
singular points within the solution domain or on its boundary, we have the error bound

||u− uh||E = Chβ||u||Hβ+1 (5)

where the value of the non-negative real parameter β depends on how the family ofmeshes {Mh}
are created.1 Assume that λ is a real number characterizing the strength of the singularity. For
a sequence of uniformly, or nearly uniformly, refined meshes we then have

β = min{p, λ} (6)

Thus, when λ < p the rate of convergence is limited by the strength of the singularity and not
the polynomial order. However, for a proper sequence of adaptively refined meshes with nearly
equidistributed error throughout the mesh, we may achieve

β = p (7)

Hence, by proper adaptive mesh refinement (AMR) we may utilize the full power of higher order
methods and that is highly relevant for Isogeometric FE-methods. The importance of the LR B-
splines is therefore to use them as an enabling technology for achieving optimal convergence
order, i.e. accurate and efficient FE-models. In general the analytical solution is not available
so we have to rely on a posteriori error estimates. However, herein we focus on the use of LR
B-Splines for local refinement, and we have thus chosen to do the numerical test on a nontrivial
benchmark problem with known analytical solution, i.e. we use the analytical “energy-error” as
input to the refinement algorithm.

The refinement algorithm is based on refining a prescribed portion of the elements, i.e. α ·nel

having the greatest elemental contribution, ρe, to the global relative error, ρ

ρe =
||u− uh||E(Ωe)

||u||E(Ω)

and ρ =
||u− uh||E(Ω)

||u||E(Ω)

=

√√√√ nel∑
e

ρ2e (8)

In classical FEM, the traditional way of refining a quadrilateral element is by subdivision,
i.e. inserting a cross to obtain four new elements. If the aspect ratio (width to length ratio)
is undesirable large, one may extend the algorithm to inserts only a single line, splitting the
element into two new elements. This way of adaptive refinement give raise to so-called “hanging
nodes” for which there are several techniques to reestablish the appropriate C0- continuity.
Herein, we subdivide marked elements into four new elements by inserting a cross (ignoring
large aspect ratio elements for now) through the element center. As discussed above, the length
of the crossing lines will have to be of a certain length in order to actually split a basis function
properly. The actual length is depending on the topology of the mesh, and may split some
neighboring elements into two new elements. In order to do a proper splitting we have as a pre-
processing step established a list telling us which basis functions have support on each element.
This information is needed when assembling the stiffness matrix. By using this list we may
extract the required length of the new knot lines without doing any costly topology search.

1As β is not necessarily an integer, ||u||Hβ+1 is a a Sloboditskii norm.
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Numerical example - The L-shape problem

The problem consist of solving the stationary heat equation, or Laplace equation ∇2u = 0 on a
L-shaped domain Ω = [−1, 1]2 \ [0, 1]2 with appropriate boundary conditions, i.e.

∇2u = 0 in Ω, u = 0 on ΓD and
∂u

∂n
= g on ΓN (9)

with g(x, y) given by the exact solution at the Neumann boundary and n being the outward
unit normal to the boundary. It can be shown that

u(r, θ) = r2/3 sin

(
2θ + π

3

)
(10)

is the analytical solution to the given boundary value problem. The homogeneous Dirichlet
boundary is given at y = 0, x ∈ [0, 1] and x = 0, y ∈ [0, 1], while all other edges are given with
Neumann conditions (see figure 1). Note that the exact solution of this problem have a stress
singularity at the origin. The strength of the singularity λ = 2

3
, hence for uniform refinement

we may only assume a convergence rate β = 2

3
. Thus, our aim is to see whether local refinement

using LR B-splines may increase the convergence rate.
An example on a LR B-spline mesh after adaptive refinements is shown in figure 2. As is

seen, the LR B-splines allow us to refine locally around the origin where the singularity appears.
In figure 3 we display the convergence rate for the global relative energy error vs number of

degrees of freedom (ndof) in a log-log plot. We display the results obtained with four different
mesh refinement sequences using cubic (LR) B-splines: a) uniform refinement, b) m1-refinement,
c) m2-refinement and d) m3-refinement. Here we use the notation m1- m2- and m3-refinement
to indicate adaptive refinement using LR B-splines with different multiplicity of the knot-lines.
Here m1-refinement means single knot line refinement with C2-continuity, m2-refinement means
double knot line refinement with C1-continuity and m3-refinement corresponds to triple knot
line refinement with C0 continuity. Increased multiplicity makes the LR B-spline refinement
more local, i.e. less propagation of the refinement to elements surrounding elements marked for
subdivision. On the other hand increased multiplicity causes an increased growth of the degrees
of freedom in the finite element system.

We see that the convergence for uniform mesh refinement is limited by the strength of the
singularity, i.e. a convergence rate is equal to −β/2 = −1/3.2 However, adaptive refinement
using LR B-splines all gives optimal convergence rate −β/2 = −3/2. Furthermore, that single
knot-line refinement (m1-refinement) is the most accurate per degrees of freedom (dof). Thus,
the results seems to indicate that regularity is more important than locality.
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Figure 1: The L-shape problem Figure 2: The 15th iteration (m1)
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Summary. The spatial discretization of elastic continuum by the finite element method (FEM) intro-
duces dispersion errors to numerical solutions of stress wave propagation problems. Moreover, oscillations
near the sharp wavefront in FE solution appear. This phenomena is called Gibb’s effect. Isogeometric
analysis, where continuous piecewise higher order polynomials are used as shape functions, improves
the dispersion errors and frequency spectrum in comparison with Lagrangian finite elements. B-spline
basis functions can be used for one-dimensional cases. In this initial work, the B-spline based finite
element method is tested in numerical modelling in one-dimensional elastic wave propagation. The spe-
cial attention is paid to the study of spurious oscillations in wavefront propagation problems with stress
discontinuities.

Key words: elastic wave propagation, B-spline based finite element method, spurious oscillations

Introduction

A lot of methods for the numerical solution of wave propagation problems in elastic solids have
been developed, for example finite difference method, front tracking algorithms, space-time
treatment methods, oscillations filtering by postprocessing, finite element spatial discretization
with the finite difference in time (semidiscretization), discontinuity Galerkin’s method and vari-
ational construction method and more others. In this paper, only the semidiscretization method
is tested in one-dimensional elastic wave propagation. For the spatial discretization, the contin-
uous Galerkin’s approximation method is employed [3].

A modern approach in the finite element analysis is the isogeometric analysis (IGA) [1],
where shape functions are based on varied types of splines. For example, B-spline (basis spline),
NURBS, T-spline and others are used for spatial discretization. This approach has an advantage
that the geometry and approximation of the field of unknown quantities is prescribed by the same
technique. Another benefit is that the approximation is smooth. It was shown for the isoge-
ometric approach, that the optical modes did not exist against higher order Lagrangian finite
elements. Further, dispersion and frequency errors for isogeometric analysis were reported to
decrease with increasing order of spline [1]. The B-spline based FEM with the small dispersion
errors [1] and the variation diminishing property [9] could eliminate the spurious oscillations,
which are the product of the Gibb’s effect and the dispersion behaviour of FEM.

B-spline based finite element method

In Computer-Aided Design (CAD), a B-spline curve is given by the linear combination of B-
spline basis functions Ni,p [9]

C(ξ) =
n∑

i=1

Ni,p (ξ)Bi, (1)
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where Bi, i = 1, 2, . . . , n are corresponding coordinates of control points. B-spline basis functions
Ni,p(ξ) are prescribed by the Cox-de Boor recursion formula [9]. For a given knot vector Ξ,
Ni,p(ξ) are defined recursively starting with piecewise constants (p = 0)

Ni,0 (ξ) =

{
1
0

if ξi ≤ ξ ≤ ξi+1,
otherwise.

(2)

For p = 1, 2, 3, ..., they are defined by

Ni,p (ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1 (ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1

Ni+1,p−1 (ξ) . (3)

A knot vector in one dimensional case is a non-decreasing set of coordinates in the parameter
space, written Ξ = {ξ1, ξ2, ..., ξm}, where ξi ∈ R is the i-th knot, i is the knot index, i =
1, 2, . . . ,m, where m = n + p + 1, p is the polynomial order, and n is the number of basis
functions. The main properties of B-spline basis functions are introduced in [9].
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Figure 1. Cubic B-spline basis functions (on the left) and an open cubic B-spline curve interpolating end
points (on the right) for ten control points and uniform knot vector.

The knot vector for an open B-spline curve interpolating end points should be in the form
Ξ = {a, . . . , a, ξp+2, . . . , ξn, b, . . . , b}, where values are usually set as a = 0 and b = 1. The
multiplicity of the first and last knot value is p + 1. If the values ξp+1 up to ξn+1 are chosen
uniformly, the knot vector Ξ is called uniform, otherwise non-uniform [9]. An example of cubic
B-spline basis functions and an open cubic B-spline curve interpolating end points with its
control polygon is displayed in figure 1.

In the B-spline based FEM [1], the approximation of the displacement field uh is given by

uh(ξ) =

n∑
i=1

Ni,p (ξ)u
B
i , (4)

where uBi is the component of the vector of control variables – displacements corresponding
to the control points. Remark, the linear B-spline FEM is identical with the standard linear
FEM. In the following text, the continuous Galerkin’s approximation method [3] for the numeri-
cal solution of partial differential equations is employed. Spatial discretization of elastodynamics
problems by the finite element method leads to [3]

Mü+Ku = R. (5)

Here, M is the mass matrix, K the stiffness matrix, R is the time-dependent load vector, u
and ü contain control point variables–displacements and accelerations. Mass matrix, stiffness
matrix and load vector are defined by the same relationships as the standard FEM [3].

A lot of discrete time direct integration methods for the system (5) were developed [3]. In this
work, the Newmark method [7] and the central difference method [2] are employed. If the theory
of linear elastodynamics is considered, then the mass matrix M and the stiffness matrix K are
constant. These matrices are evaluated by the Gauss-Legendre quadrature formula [3].
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Problem description

In this contribution, the crucial test is a problem of axial elastic waves propagation in a free-fixed
”thin” bar under the force loading prescribed by the Heaviside step function, see figure 2. The
shock loading generates the sharp stress and velocity wavefront in the shape of discontinuity.
The parameters of the task are set: the bar length L = 1m, the cross-section A = 1m2,
Young’s modulus E = 1Pa, the mass density ρ = 1 kg/m3 and the amplitude of impact pressure
σ0 = 1Pa. The analytical solution of this impact problem could be found in reference [6], where
the displacement field u(x, t) without a wave reflection in the time range t ∈ [0, L/c0] is

u(x, t) = v0 (t− x/c0)H(t− x/c0), (6)

where the impact velocity is given by v0 = σ0/
√
Eρ and H(t) is the Heaviside time step function

[5]. Wave speed in an elastic bar is prescribed by the relationship c0 =
√
E/ρ.

L

xF(t)
A,E,�

�
t

�
F (t)

F0 = Aσ0

Figure 2. Scheme of an elastic free-fixed bar under a shock loading.

Finite element response

The response of the elastic bar is computed numerically by the Newmark method (NM) [7] with
the consistent mass matrix [3] and the central difference method (CDM) [2] with the lumped
mass matrix by the ”row sum” method [3]. Time step for NM is chosen as ΔtNM = 1/8Tmin,
where Tmin is the minimal vibration period of the whole system (5). It is valid Tmin = 2π/ωmax,
where ωmax is the maximum eigenfrequency of the whole system (5). The period elongation
error for NM with this time step is smaller than 5% [3]. Time step for CDM is set with respect
to the stability condition [8] and good dispersion behaviour. Practically, time step is chosen as
ΔtCDM = 0.99999Δtcrit, where the critical value is given by Δtcrit = 2/ωmax [8].

The bar is discretized by linear (p = 1) and cubic (p = 3) B-splines with n = 100 control
points. The knot vector is used the uniform ones and the parameterization is set linear by the
Greville abscissa [4]. The courses of dimensionless stress σ/σ0 along the bar computed by NM
and CDM are depicted on figures 3 and 4 at time t = 0.5L/c0. The theoretical wavefront takes
place in half of the bar and the stress value in the overlaying area has the magnitude σ = −σ0.

Conclusions

In the numerical test, the oscillations near sharp wavefronts for the B-spline based FEM are
smaller than for the classical FEM due to the variation diminishing property and better disper-
sion. Further, the oscillations for IGA is reported to decrease with increasing order of splines,
but there are not absolutely eliminated. The post-shock oscillations are typical for CDM and
the front-shock oscillations arise for the Newmark method. The best results have been obtained
for CDM with near the critical time step and linear finite elements. In future, a choice of the
time step for the direct integration methods and mass lumping will be in the centre of attention.
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Figure 3. Stress in an elastic bar under the shock loading at time t = 0.5L/c0 computed by the Newmark
method for linear (on the left) and cubic (on the right) B-splines.
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Figure 4. Stress in an elastic bar under the shock loading at time t = 0.5L/c0 computed by the central
difference method for linear (on the left) and cubic (on the right) B-splines.

References

[1] J.A. Cottrell, T.J.R. Hughes and Y. Bazilevs. Isogeometric Analysis: Toward Integra-
tion of CAD and FEA. John Wiley & Sons, New York, 2009.

[2] M.A. Dokainish and K. Subbaraj. A survey of direct time-integration methods in computa-
tional structural dynamics - I. Explicit methods. Comp.& Struct., 32(6):1371–1386 1989

[3] T.J.R. Hughes. The Finite Element Method: Linear and Dynamic Finite Element Analysis.
New York: Prentice-Hall, Englewood Cliffs, 1983.

[4] T.N.E. Greville. On the normalization of the B-splines and the location of the nodes for the
case of unequally spaced knots. O. Shiska eds. Inequalities, Academic Press, New York, 1967.

[5] R.P. Kanwal. Generalized Functions: Theory and Technique. Birkhäuser, Boston, 1998.
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Summary. This extended abstract presents the work done so far on modeling woven composite 
materials, specifically two carbon fiber reinforced plastics materials: twill and plain weave. The material 
model has been initially verified against data available in a database. 
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Introduction 

For decades tape-springs has been used as deployable structures in space due to its compact stowed 
volume and good structural characteristics when deployed. Metallic tape springs are only stable in the 
deployed state so a robust containing solution needs to be used to keep them coiled. Moreover, during 
deployment an active control scheme must be used to prevent blooming [1]. These aspects pose issues on 
the overall mass budget, reliability and complexity for such mechanisms. However, bi-stable tape springs 
made of, for instance, woven carbon fiber reinforced plastics (CFRP), show two well-defined stable 
configurations: the completely stowed and completely uncoiled configurations. Bi-stability in such 
deployable structures allows a dramatic reduction in mass as well as in control complexity thus, 
increasing the reliability of the system. 
 
CFRP modeling  
The main modeling difficulties come from the orthotropy of the material and its characteristic woven 
structure (Fig. 1), embedded in a cured resin matrix. In a plain weave (Fig. 2) odd bundles pass over one 
and under one perpendicular bundle, and even bundles reverse this order. In the twill type (Fig. 3) odd 
bundles pass over two perpendicular bundles and under one, while even bundles reverse this order. 
 
 
 
 
 
Figure 1: Plain weave woven scheme.              Figure 2: Plain weave CFRP.            Figure 3: Twill CFRP. 
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Bi-stability 
In this context, the term bi-stability is used when a structure shows two well-defined stable 
configurations: coiled and straight (deployed) ones. These two configurations represent local minima of 
the stored strain energy and, to transit from one to another, external activation energy must be provided. 
Such activation energy is in our case a bending moment applied on the edges of the straight configuration 
in order to flatten it (Fig. 4). Once a certain point (point A in Fig. 4) is reached, the tape-spring section 
becomes flat and tends to coil in a virtual cylinder with axis perpendicular to the straight configuration 
axis, storing the generated strain energy. If then we start removing the bending moment applied, the strain 
energy is slowly released and two phenomena may occur: either the tape spring snaps back to the straight 
configuration (point B in Fig. 4) or it remains rolled-up storing strain energy (Fig. 5). 
 

 
Figure 4: Strain energy curves for a non-bi-stable tape-spring. 

Models 

The  material  model  developed  here  is  based  on  Naik’s  model  [2],  which  simplifies  the  unit  cell  of  the  
material  of  Fig.  1  into a  four  layer  cell  made of  two resin layers  on the outer  layers  and the interlacing 
carbon fiber bundles as separated unidirectional (UD) plies as in Fig. 6. Naik’s model predicts well the in-
plane behavior of the material but not the out-of-plane behavior and the bending stiffness is a crucial 
parameter here since it is the origin of the strain energy generated. Thus, the strain energy is directly 
related to the bi-stability characteristics of the boom. Consequently, Naik’s model was modified by 
dividing the basic cell into a series of plies, until a model that permits to vary the thickness and position 
of each layer (Fig. 7) to tune the bending characteristics without affecting the in-plane properties of the 
material. 
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Figure 5: Strain energy curves for a bi-stable tape-spring. 

 
After tuning the material model parameters against data from a database, it is implemented in the coiling 
simulation developed in the software Abaqus. With the proper boundary conditions on the booms, the tips 
are flattened over the spool, Fig. 8(a), making coincident the edge nodes with a set of nodes in the spool. 
Rotation is then applied to the spool, pulling the boom and coiling it, Fig. 8(b), which generates strain 
energy that is stored on the coiled configuration. When only the transition zone (a few centimeters) is left, 
the coiling stops, Fig. 8(c). Note that it is vital to keep this transition zone since it is the mechanism that 
drives the deployment towards the second stable configuration. 

 

 
Figure 6: Unit cell simplification in Naik’s model (from [2]). 

 

 
Figure 7: Naik’s cell model modification to obtain the proposed model. 
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Figure 8: Coiling simulation steps. 

 
Results 

A case example is shown in Table 1. It corresponds to a plain weave specimen with fiber volume content 
(Vf) of 0.85, gap ratio (g/a) of 0.21 and fiber direction at 45° bias, which is a well-approximated example 
of  the  plain  weave  CFRP  we  have  for  the  project  and  to  be  used  in  our  simulations.  Vf is a common 
parameter that comes along other properties and defines the volume of fibers with respect to the resin; g/a 
is a parameter created here in order to take into account the gaps observed in the plain weave case; the 
bias is measured with respect to the longitudinal direction of the boom and must be 45° here to ensure a 
symmetrical mechanical properties longitudinally (0°) and transversely (90°) to the tape-spring. 
 

Table 1: Plain weave with Vf = 0.85, g/a = 0.21 and at 45° bias. 

Property Model prediction Error with respect to database values 

Tensile modulus (GPa) 11.75 �1.48 
Shear modulus (GPa) 27.0 +2.98 
Poisson’s ratio (-) 0.794 �0.92 

 
 
Discussion and conclusions 

Bi-stability strongly relies on the out-of-plane properties (bending) thus a model that is accurate in 
bending is crucial. Previous modeling techniques were not successful (or computationally too expensive 
[3]). To address this aspect a modified Naik’s model was developed. The modifications made on Naik’s 
model has provided a significantly improvement on the results agreement with real material properties. 
However, several aspects need to be improved and others further investigated to include them in our 
analyses, i.e. observed creep, low temperature sensitivity and friction during deployment. 
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Summary. This article presents an experimental method to measure the compliances of 
cellular structures composed of hexagonal cells. The experiments are based on uni-axial tension 
tests for Nomex® honeycomb cores. Specimens with various material orientations relative to 
loading direction are tested. Consequently, the relationship between stress and strain tensors is 
constructed. 
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Introduction 

An experimental method is presented to measure the in-plane compliance matrices of Nomex® 

honeycomb cores without a priori assumptions such as orthotropy, etc. In order to obtain 
compliance, uni-axial tension tests are carried out for different material orientations. Marker 
tracking technique is used to determine positions of the marker points on the material. These 
data are processed to get strain of the measuring domain while the stress is estimated through 
external loading and core geometry. Analysis is confined to a measuring domain under near 
constant stress and strain.  

Methodology 

Stress-strain relation in laboratory XY-coordinate system is given by 
 
  T{ } [ ]{ } [ ] [ ][ ]{ }.� �e C s T C T s  (1) 
 
In expression (1), {e} and {s} are the column vector representations of strain and stress tensors 
with assumption of symmetry (eij = eji and sij = sji for ,  { ,  }i j X Y� ), while [C] is the square 
matrix representation for the compliance tensor C in XY-coordinate system [1]. In order to 
obtain compliance matrix [C] in material WL-coordinate system, orthogonal transformation [T] 
of the second form in (1) is used [2], which is followed by least square fitting to experimental 
data on {e} and {s}. The purpose is to solve [C] using various material orientations relative to 
the loading direction. 
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Experiments 

Material type, displacement of hydraulic actuator and specimen orientation angle relative to uni-
axial load are considered as the independent variables. Material type is described in terms of the 
cell wall thickness t, height h, length l and corner angle �, cell wall elastic modulus Es, and core 
thickness T . The dependent variables of experiments are the load vector F

�
and position data of 

the markers in the measurement domain, which are used in the stress and strain calculations.  
Three different cell sizes c1=5 mm, c2=6 mm and c3=13 mm, and two different core 

thicknesses T1 = 7 mm and T2 = 12 mm are used in order to evaluate the effects of dimensional 
parameters on the effective in-plane mechanical properties. Samples are formed based on these 
two parameters, while the specimens of each sample are prepared using four different 
orientations �1=0�, �2=90�, �3,4=±45� relative to uni-axial loading as seen in figure 1. In defining 
specimen dimensions and testing, ASTM C363 test method for sandwich constructions and 
cores is taken into account [3]. 
 
  
 

                 
 
 
 
 
 
 
 
 
 

Figure 1. Specimens with different material orientations relative to loading direction. 

Experiments are carried out in a steel frame of 920 × 920 mm2 with wall thickness of 60 
mm. The large frame gives flexibility to test large sheets and provides suitable loading condition 
on the measurement region. Bottom section of the specimen is fixed using fixture plates 
connected to a stationary joint; whereas, top section is adjusted to move upwards and 
downwards along an axis. The actuating system consists of a hydraulic servo cylinder with a 
pressure up to 16 MPa. Test duration changes between 3 to 6 minutes with a constant loading 
rate.  
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Analysis 

Marker tracking and displacement analysis 

Marker center coordinates (Xi, Yi) inside the measurement domain are calculated with marker 
tracking technique. For this purpose, an in-house code has been developed and verified with 
rigid body motion tests.  

The marker displacements associated with frame f are obtained as 
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f f
i i i

f fi i i
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 (2) 

 
in which, u and v are the displacements along X- and Y-axes, respectively. Then, continuous 
displacement field fu�  is obtained as a linear function by means of least square analysis of the 
marker displacements. As a result of partial differentiation of fu� , deformation gradient 
[ ] [ ][ ]�F R U  is calculated.  

 
Strain and stress measures 

In order to eliminate the effect of rotation in strain calculations, the Green-Lagrange strain 
measure E is used in terms of right stretch tensor U. According to [4], 

 

  21[ ] ([ ] [ ])
2

� �E U I  (3) 

 
in which I is the identity tensor and [ ] [ ] [ ]� �U I� . In case of small strain assumption, 
expression (3) becomes 
 

  21[ ] ([ ] 2[ ] [ ] [ ]) [ ].
2

� � � � �E I I� � �  (4) 

 
For the constitutive modelling, the stress measure should be selected invariant to rotations 

and symmetric because of the strain measure characteristics in expressions (3) and (4). The first 
property is satisfied with first Piola-Kirchhoff stress tensor P, while the latter is satisfied with 
second Piola-Kirchhoff stress tensor S. First Piola-Kirchhoff stress tensor P is expressed in 
terms of infinitesimal load vector dF

�
, unit area dA and unit surface normals 1N

�
, 2N
�

in the 
initial configuration. Hence, 
 

  ,  {1,  2}.
i i
X XXX YX
i i

Y YXY YY

dF NP P
dA i

dF NP P
� � � �� �	 	 	 	� �
 � 
 �� �

� �	 	 	 	�  � 
 (5) 

 
Then S, which is symmetric and energy conjugate to E, is calculated as 

 
  1[ ] [ ] [ ].��S F P              (6) 
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Results 

Since the main purpose is to calculate the compliance matrices as tabulated in table 1, the study 
is limited to small displacements of cell walls under bending deformation.  
 
Table 1. Effective in-plane mechanical properties for tested Nomex® honeycomb cores. Prefix 

S- stands for sample, while the following figures are for cell size c and core thickness T. 
 

 
 
 
 
 

 

Concluding remarks 

In this study, uni-axial tension tests are conducted with Nomex® honeycomb cores with various 
material orientations relative to loading direction. Results of these experiments are given in 
terms of the stress and strain measures and processed with transformation and least squares 
functions to obtain the full compliance matrices.  
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Sample l 
[mm] 

t 
[mm] 

� 
[�] 

EW 
[kPa] 

EL 
[kPa]

GWL 
[kPa]

vWL 
 

vLW 
 

S-5-7 
S-5-12 
S-6-7 
S-6-12 
S-13-7 
S-13-12 

2.5 
2.5 
3.2 
3.2 
6.6 
6.8 

0.05 
0.05 
0.06 
0.06 
0.13 
0.13 

32 
34 
26 
28 
32 
32 

121.0 
105.8 
171.9 
150.0 
122.9 
96.5 

158.5
159.8
118.0
105.7
154.2
128.2

92.6 
98.3 
64.3 
71.4 
91.9 
84.6 

1.12
0.97
1.31
1.29
1.26
0.91

1.47
1.47
0.89
0.91
1.58
1.21

Wall height h 

Wall length l 

Core thickness T 

Cell size c 

Wall thickness t 

Corner angle � 
2t
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Hypo– and hyperinelasticity applied to modeling
of compacted graphite iron machining simulations
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Summary. In the present paper we are concerned with constitutive modeling and validation of the
thermomechanically coupled Compacted Graphite Iron (CGI) machining problem. Particular empha-
sis is placed on the significance of the choice of different hypoelastic-inelastic formulations in terms
of four different objective stress rate formulations. We also relate to a thermodynamically consistent
hyperelastic–inelastic formulation based on multiplicative decomposition of the deformation gradient.
The consequently induced tangent material behavior is then derived in the spatial setting in terms of
the Oldroyd stress rate, and it is compared to the hypo–formulations. The Johnson–Cook (JC) model
is taken as the main prototype for the modeling of isotropic hardening, strain rate and temperature
dependencies. The different models are compared in simple shear, uniaxial tensile–compressive tests, and
finally in a representative CGI–machining simulation, and the resulting mechanical isothermal behavior
obtained from the different ways of establishing the objective stress rate are surprisingly similar.

Key words: Johnson-Cook plasticity, hypoelastic-inelastic, hyperelastic-inelastic,, objective stress rates

Constitutive modeling of pearlite phase in CGI microstructure

The Johnson–Cook model

We shall consider various constitutive formats applied to the JC–model representing isotropic
material hardening, rate dependence, and temperature dependent material properties. In this
development, we first note that the standard form of this model is quite often established in the
Green–Naghdi stress rate τ̂ assuming isotropy in the rate behavior for the elastic response. We
thus simply postulate the objective stress rate in terms of the elastic material operator Ee as

τ̂ = Ee :
(
l̄ − lth

)
with lp = λf , f =

3

2

τ dev

τe
, lth = αθ̇1 (1)

The JC–model is quite often specified in terms of a ”rate dependent yield function”, However,
in order to fit themodel into the presently proposed constitutive formats, themodel is considered
recast into the Perzyna viscoplasticity format where the overstress function is specified in terms
of a quasistatic yield function Φ as{

λ = ε̇0 exp
[

<Φ>
C(1−θm)(A+Bkn)

]
� λ > 0 if λ

ε̇0
≥ 1

Φ ≤ 0, λ ≥ 0, λΦ = 0 � λ > 0 if λ
ε̇0

< 1
(2)

where the yield function is defined by Φ = τe − (A+Bkn) (1− θm). As to the material pa-
rameters involved, we note that A, B and C are material parameters representing initial yield,
hardening and rate sensitivity, respectively. In addition, the exponent n represents the harden-
ing, whereas the exponent m represents the temperature dependence.
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Relation between hyperelastic–inelastic and hypo–formulations

In this subsection we scrutinize formulations based on the objective spatial Zaremba-Jaumann,
Green-Naghdi, Oldroyd and Mandel stress rates as compared to a corresponding thermodynam-
ically consistent one.

The hypoelastic–inelastic framework

The considered objective spatial Zaremba-Jaumann, Green-Naghdi, Oldroyd and Mandel stress
rates are obtained based on induced, differently back–rotated material stresses – either the stress
tensor T , the second Piola Kirchhoff stress tensor S or the Mandel stress tensor M associated
with the Kirchhoff stress τ are considered. These stresses and their associated objective rates
are defined as

T = Rt · τ ·R ⇒ Ṫ = Rt · τ̂ ·R

S = F−1 · τ · F−t ⇒ Ṡ = F−1 ·
�
τ · F−t

M = F t · τ · F−t ⇒ Ṁ = F t ·
�
τ · F−t

(3)

where τ̂ and
�
τ are the symmetric Green-Naghdi and Oldroyd stress rates, respectively. As to

the Mandel stress rate
�
τ it is generally non–symmetric but may be shown to be symmetric

provided that e.g. elastic and plastic isotropy in the rate response is at hand. As a consequence
of (3), we find that these stress rates are obtained as

τ̂ = τ̇ − ω · τ + τ · ω

�
τ = τ̇ − l · τ − τ · lt

�
τ = τ̇ + lt · τ − τ · lt

(4)

where F is the deformation gradient tensor and R is the rotational part of the continuum
deformation gradient, i.e. F = R ·U , where U is the symmetric right stretch tensor, which in
turn is related to the prominent right Cauchy-Green deformation tensor as C = F t ·F = U ·U .

The hyperelastic–inelastic framework

It is of significant interest to relate the proposed constitutive relations based on a hypoelastic-
inelastic response to a generalized dissipative material based on the hyperelastic-inelastic for-
mulation, whose basic concepts originally were proposed in Ref. [1]. As opposed to the hypo-
inelastic formulations, the basic idea is to assume the presence of a stored energy function ψ

[
C̄
]
,

as a function of the elastic (reversible) part of the deformation; It is thereby assumed that the
deformation gradient can be considered decomposed multiplicatively into a reversible component
F̄ and an irreversible component F p defined as F = F̄ · F p, which induce the additive decom-
position, in much the same fashion as in Eq. (1), of the spatial velocity gradient l = Ḟ · F−1

as
l = l̄+ lp (5)

Within the hyperelastic-inelastic framework, the structure of the constitutive relations are
based on the second law of thermodynamics specified in the dissipation inequality D ≥ 0. More
specifically, a thermodynamically consistent model should satisfy the inequality

D =
1

2
S : Ċ − ψ̇

[
C̄, k

]
= τ : lp + κk̇ ≥ 0 with S̄ = 2

∂ψ

∂C̄
, τ = F̄ · S̄ · F̄

t
and κ = −

∂ψ

∂k
(6)

where S̄ is the second Piola–Kirchhoff stress tensor defined on an intermediate configuration, as
induced by the multiplicative decomposition. We thus carefully note that the difference between
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hypo– and hyperelastic-inelastic formulations is that hyperelastic-inelastic models possess a total
stress-strain relation, whereas rate formulated models within the ”hypo–framework” generally
lack this property.

In order to characterize the consequent tangential response, we introduce the the symmetric

elastic Oldroyd rate as
�
τ̄ = F̄ · ˙̄S · F̄

t
leading to

�
τ̄ = τ̇ − l̄ · τ − τ · l̄

t
= Ee

2 : l̄ with Ee
2 =

(
F̄ ⊗̄F̄

)
: Le

2 :
(
F̄

t
⊗̄F̄

t
)

and Le
2 = 4

∂2ψ

∂C̄ ⊗ ∂C̄
(7)

where Ee
2 is the elastic second Eulerian material tangent operator. It may be noted that within

the present framework, cf. Eq. (1), we define lp = λf whereby f and τ commute and

�
τ = Ee

2 : l̄ − 2λf · τ = Ee
2 : l − (Ee

2 : f + 2f · τ )λ (8)

Please note that the present framework implies a thermodynamically consistent formulation in
the sense that the postulated Oldroyd rate behavior is in line with a dissipative material based
on a hyperelasto-viscoplastic formulation along with a multiplicative split of the deformation
gradient.

A consistent Johnson-Cook model

In order to compare with the hypoelastic-inelastic formulation, we may propose a simple Neo-
Hookean hyperelastic-inelastic extension of the JC–model developed in Subsection , where the
explicit expression for the free energy is taken as ψ = ψiso +ψvol +ψmic with, in particular, the
special formulation with respect to the thermal behavior, cf. Ref. [2], taken as

ψiso =
1

2
G

(
Î1 − 3

)
, ψvol =

1

2
K

((
J̄ − 1

)2
− 6J̄

(
J̄ − 1

)
αθ

)
, ψmic =

B

n+ 1
kn+1 (1− θm)

(9)
In (9), Î1 is the first invariant of the elastic isochoric right Cauchy-Green deformation tensor,

i.e. Î1 = J̄−
2

31 : C̄, and J̄ = J represents the volumetric part of the deformation. Hence, in
view of (6) the total stress response may be formulated in terms of the Kirchhoff stress as

τ = GJ̄−
2

3

(
b̄−

Ī1

3
1

)
+KJ̄

(
J̄ (1− 6αθ)− 1 + 3αθ

)
1 (10)

For the considered hyper–elastic model the reduced dissipation is simply obtained from (6)
as

D = (Φ+A (1− θm))λ ≥ 0 (11)

We remark that the dissipation D in (11) is generally different from what traditionally is used
for hypo–formulations to describe the dissipated energy converted to heat, i.e. ηwp, where
wp = τ : lp is the plastic work rate and η is an inelastic heat fraction parameter determining the
amount of the plastic work rate that is transformed into heat. In (11) this effect is accounted
for by the inclusion of the hardening (or amount of ”cold work”) in D.

Isothermal shear– test of the JC–model with respect to objective stress rates

Let us next consider the constitutive response at a simple shear tests (at room temperature)
pertinent to the JC–model along with a calibrated set ofmaterial parameters. In the analysis, the
constitutive framework is varied based on the hypo-inelastic framework, involving the objective
stress rate formulations, and the hyper-inelastic framework (where two models are considered).
We expect a slight difference in response depending on which stress rate the rate behavior Ee : l̄
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(where Ee is the elastic constant stiffness modulus tensor) is postulated with respect to. We
thus consider the response of the stress rates formulated as

τ̂ = Ee : l̄ SGN
�
τ = Ee : l̄ SMR
�
τ = Ee : l̄ SOR
�
τ = Ee : l̄︸ ︷︷ ︸

E
e
2
:̄l

−2λf · τ SORa

(12)

As to the Oldroyd stress rate (4b) two alternative choices are considered: The first one is the
standard SOR–model, where linear elastic response in the Oldroyd stress rate is specified, cf.
(4b), whereas for the second SORa–model, cf. Eq. (8), the Oldroyd stress rate is consistent
with the hyperelastic–inelastic modeling framework.

The results for the simple shear test are shown in Fig. 1, where it is observed that all stress
rate formulations yield more or less the same shear stress response. However, a comparison
between the other stress components during the shear deformation reveals a spurious normal
σ11–stress component for the Oldroyd SOR model as depicted in Figure 1. This error in the
normal stress component generally leads to an incorrect estimation of stress triaxiality in the
material, which in turn is of vital importance for diagnosing ductile fracture in the machining
simulations.
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Figure 1. Shear test with respect to different objective stress rates for calibrated material parameters.
We have γ̇ = 2500 at room temperature.
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Summary. A disperison analysis of a scalar continuum damage model is carried out in a uniaxial case.

Key words: continuum damage mechanics, dispersion analysis, phase velocity, group velocity

Introduction

In continuum damage mechanics degradation of elastic properties is described by using a state
variable which measures local damage relative to a certain direction. If the orientations of cracks
and cavities are assumed to be distributed uniformly in all direction, only a single scalar variable,
D is sufficient to describe the damaging process [1, 2]. The stress σ is obtained from

σ = (1 − D)Eε, (1)

where E is the Young’s modulus and ε is the strain. For convenience the integrity parameter
β = 1−D is used in the sequel. The evolution of integrity is governed by the Kachanov-Rabotnov
type model

β̇ = −
βk

td

(
Y

Yr

)r

, (2)

where td, k and r are material parameters, Y is the thermodynamic force conjugate to the
integrity rate β̇, and has the expression

Y =
1

2
Eε2 =

1

2E

(
σ

β

)2

. (3)

The reference value Yr can be chosen freely, here it is defined as Yr = σ2
r /2E, where σr is an

arbitrary reference stress. Usually the value k = −1 is chosen in equation (2) [1, 2]. However,
in a recent paper [3] it is shown that such a choice will lead to unphysically high wavespeeds for
long waves.

Equation of motion

The equation of motion for a uniform bar is

ρ
∂2u

∂t2
−

∂σ

∂x
= 0, (4)

where ρ is the mass density of the material. For the dispersion analysis, the equations (4)
and (1)-(2) are written in a non-dimensional form by defining the following non-dimensional
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quantities:

τ = t/te, te = L/ce, where ce =
√

E/ρ, (5)

ξ = x/L, ū = u/L, s = σ/σr, εr = σr/E, (6)

where L is a typical characteristic length of the bar, and ce is the speed of an elastic wave. In
addition, it is convenient to define the relative strain e and the non-dimensional time parameter
τd as

e = ε/εr, τd = td/te. (7)

Using the non-dimensional quantities, the equation of motion (4) takes the form

∂2ū

∂τ2
− εr

∂s

∂ξ
= 0. (8)

The constitutive equations (1)-(2) take the form

s = βe, (9)

dβ

dτ
= −τd

−1βk

(
Y

Yr

)r

= −τd
−1βk−2rs2r ≡ g(β, s). (10)

Dispersion analysis

A continuum is said to be dispersive if waves with different wave length or frequency propagate
with different velocities. The ability to transform the shape of waves seems a necessary condition
for continua to capture localisation phenomena. In a classical strain-softening solid, the waves
are not dispersive, which means that the continuum is not able to transform propagating waves
into stationary localisation waves [4]. In the dispersion analysis, a single linear harmonic wave
is considered and the displacement field u for an infinitely long 1-D continuum has the form

u(x, t) = A exp [i(kx − ωt)] , (11)

in which k is the wave number, ω is the angular frequency and A is a coefficient. The non-
dimensional form of the wave is

ū(ξ, τ) = Ā exp[i(k̄ξ − ω̄τ)], where k̄ = kL, and ω̄ = ωte. (12)

Linearising the equation of motion (8) at state β∗, s∗, and taking the time derivative w.r.t.
the non-dimensional time, results in equation

∂3ū

∂τ3
− εr

∂ṡ

∂ξ
=

∂3ū

∂τ3
− εr

(
β∗

∂2e

∂ξ∂τ
+ e∗

∂2β

∂ξ∂τ

)
= 0. (13)

Divergence of the integrity rate is

∂2β

∂τ∂ξ
=

∂g

∂β
|∗

∂β

∂ξ
+

∂g

∂s
|∗

∂s

∂ξ
= g1

∂β

∂ξ
+ g2εr

−1 ∂2ū

∂τ2
, (14)

where the following abbreviations are used

g1 =
∂g

∂β
|∗ = −

k − 2r

τd
βk−2r−1
∗

s2r

∗
and g2 =

∂g

∂s
|∗ = −

2r

τd
βk−2r

∗
s2r−1
∗

. (15)

Using the equation of motion (8) ∂β/∂ξ can be eliminated and results in

∂3ū

∂τ3
− h0

∂3ū

∂ξ2∂τ
− h1

∂2ū

∂τ2
+ h2

∂2ū

∂ξ2
= 0, (16)
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Figure 1. Elastic damaging bar: phase (l.h.s.) and group velocity (r.h.s.) as a function of wavenumber at
the strain value e = 1.2. Solid line corresponds to the case k = 1 and the dashed line k = −1, respectively.

where

h0 = β∗, (17)

h1 = g1 + s∗β
−1
∗

g2 = −
k

τd
βk−2r−1
∗

s2r

∗
, (18)

h2 = β∗g1 = −
k − 2r

τd
βk−2r

∗
s2r

∗
. (19)

Substituting the expression for harmonic wave (11) into (16), yields an equation which only can
be satisfied if the wavenumber is complex, i.e. k̄ = k̄r + ᾱi, which means that the harmonic wave
is attenuated exponentially when traversing through the bar as

ū(ξ, τ) = Ā exp(−ᾱξ) exp[i(k̄rξ − ω̄τ)]. (20)

This will result in the dispersion relation

i
[
ω̄3 − h0ω̄(k̄2

r − ᾱ2) − 2h2k̄rᾱ
]
+ 2h0ω̄k̄rᾱ + h1ω̄

2 − h2(k̄
2
r − ᾱ2) = 0. (21)

Since both the real and imaginary part of this expression has to vanish, it will result in two
equations from which the wavenumber k̄r and the damping coefficient ᾱ can be solved. After
manipulations, resulting equations are

k̄r
4
− a1k̄

2
r − a2

0ω̄
2 = 0, ᾱ = a0ω̄/k̄r, (22)

where

a0 =
(h2 − h0h1)ω̄

2

2(h2
0ω̄

2 + h2
2)

, h2 − h0h1 =
2r

τd
βk−2r

∗
s2r

∗
, (23)

a1 = h−1
0 (ω̄2 − 2h2a0). (24)

Clearly the term a0 is positive, but the sign of the term a1 depends on the state. Thus, the
solution of (22) can be written as

k̄2
r = 1

2 |a1|
(√

1 + 4(a0/a1)2 + sign(a1)
)

, a1 �= 0. (25)

The group and phase velocities cR and c, respectively, are defined as

cR =
dω

dkr
= ce

dω̄

dk̄r
and c =

ω

kr
= ce

ω̄

k̄r
, (26)
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Figure 2. Elastic damaging bar: stress-strain (l.h.s.) and damage-strain (r.h.s.) curves. Solid line
corresponds to the case k = 1 and the dashed line k = −1, respectively.

and they are shown as a function of the wavenumber in fig. 1 for a constant strain rate loading
case at a post-peak state. In the figure, the following values are used: E = 40 GPa, σr =
20 MPa, td = 1 s, r = 4, and the loading rate is 10−3 s−1. The stress-strain curves and the
damage evolution are plotted in fig. 2.

Notice that the group velocity is now larger than the phase velocity for the case k = 1, a
situation which is referred to as anomalous dispersion ([5], p. 218). For k = −1 the elastic
damaging bar exhibits normal dispersion, i.e. cR < c. It is clearly seen that for the case k = −1
the phase velocity exceeds the elastic wavespeed for long waves, but for the case k = 1 the phase
velocity is below the speeed of an elastic wave for all wavelengths.

Concluding remarks

A dispersion analysis of a Kachanov-Rabotnov type damage evolution equation is given. It is
observed that the most used form of the evolution equation (k = −1) will result in unphysically
high wavespeeds for long waves. An alternative form of the damage evolution equation is given
which also has a desirable feature of limited damage growth (k ≥ 1). In a further study the
complete strain-rate dependent ductile-to-brittle constitutive model [6, 7] will be analysed.

References

[1] J. Lemaitre, J.-L. Chaboche. Mechanics of solid materials, Cambridge University Press, 1990.

[2] J. Lemaitre. A course on damage mechanics, Springer-Verlag, Berlin, 1992.

[3] H. Askes, J. Hartikainen, K. Kolari, R. Kouhia. Dispersion analysis of a strain-rate dependent
ductile-to-brittle transition model. Proceedings of the 10th Finnish Mechanics Days, 3-4.12.2009,
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Summary. Case II type diffusion can occur when a low molecular weight solvent is exposed to the
surface of a polymeric solid. The diffusion of the solvent within the polymer causes the polymer to
swell significantly. Furthermore, the polymer undergoes a glass-to-rubber type transition. The rate at
which the solvent diffuses within the polymer is dependent upon the relaxation state of the polymer.
This contribution discusses the computational modeling of the case II phenomenon. The geometrically
nonlinear case is considered. The general framework is introduced by considering the problem of coupled
deformation, heat conduction and species diffusion.

Key words: continuum mechanics, case II, diffusion, coupled problems, multiphysics

Case II diffusion in polymers

The problem of interest is the diffusion of a solvent within a polymeric solid. Classical diffusion
(also termed Fickian diffusion) is characterized by a process wherein the solid material under-
goes negligible rearrangement due to the presence of the diffusing solvent, or indeed where the
molecular rearrangements within the polymer happen so fast as to be instantaneous from the
perspective of the diffusing species. Fick’s first law, with its assumption that the diffusive flux
is proportional to the gradient of the concentration, proves adequate to describe a broad range
of diffusion processes.

The diffusion of a low-molecular weight solvent within a glassy polymeric solid can exhibit
significant deviations from classical Fickian diffusion. When a solvent penetrates the polymer
near the glass transition temperature, three main phenomena occur: (1) The transport of the
solvent follows a non-classical law until a characteristic time tc. After tc the usual Fickian
behavior takes over and Fick’s law is valid. (2) A sharp moving front divides the polymer into
two regions. Ahead of the front the polymer is still glassy due to a low solvent concentration.
Behind the front, under the action of the solvent, the glassy state is undone and plasticization
occurs. (3) Macroscopic elastic stresses between plasticized and glassy regions develop and
eventually decay as the sample reaches equilibrium. In particular, the inner rigid glassy regions
constrain the swelling of the outer plasticized portion. Case II diffusion is classified as a traveling
wave (or S-shape) form of the probability density (concentration) profiles with a straight line
form of the isotherm sorption curve for early times of the process. It differs significantly from
classical Fickian diffusion and is usually studied in experiments of sorption and permeation of
low molecular weight species in thin polymeric membranes. This non-classical type of diffusion
was coined case II diffusion by Alfrey, Gurnee and Lloyd (1966) who were the first to document
it.
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The classical equations governing Fickian diffusion are parabolic and ignore the influence
of external stresses on the diffusion process. These two shortcomings are essential to address
in order to accurately predict the coupled diffusion–deformation processes that occur in case
II diffusion. Typical industrial applications can be found in e.g. pharmaceutical, biological,
environmental or automotive fields. Such possible applications include the removal of solvent
from polymer solutions during dry spinning, microlithography, diffusional release of pollutants
and additives from polymers into the environment, controlled release of agricultural chemicals,
film casting and coating, development of photoresists, neurotransmitters transport, or controlled-
release drug delivery devices, for example.

The objective of this contribution is to provide an overview of non-Fickian case II type
diffusion and its computational modeling. The mathematical model rigorously accounts for the
complex, non-linear coupled interactions between the polymeric solid and the diffusing solvent.
Moreover, it is derived from thermodynamic principles and presented within the framework of
non-linear continuum mechanics. The multiphysics problem considers deformation, diffusion
and heat conduction. This leads to a highly nonlinear and coupled system of equations which
requires a robust solution algorithm. The numerical implementation of the model is done within
the context of the finite element method.
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Summary. In this study an alternative integration scheme for elasto-plasticity based on a Diagonal
Implicit Runge-Kutta (DIRK) scheme originally proposed by Ellsiepen (1999) is investigated. In
contrast to clasical approaches, the DIRK scheme is applied to the balance of momentum as well
as the constitutive evolution equations. The presented numerical algorithm is applied to an elasto-
plastic bounadry value problem and the examples reveal that a significant increase in accuracy can be
obtained at virtually no cost using the DIRK scheme.
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Introduction

The elasto-plastic boundary value problem is governed by balance of momentum and consti-
tutive evolution equations that control the material response locally. Since explicit algorithms
are restricted to relativly short loading duration, implict algorithms are frequently employed.
The size of the time steps taken in the implicit algorithms are typically based on a heuristic
rule which is not related to the accuracy of the elasto-plastic boundary value problem.

The canonical numerical method for performing the integration of the constitutive laws
was proposed by Wilkins (1964) and is based on a backward Euler approximation of the
evolution equations in combination with enforcement of the yield condition at the end of
the integration interval. The Wilkin’s method or the radial-return method are considered as
being independent of the balance of momentum. However, in Fritzen (1997) the elasto-plastic
boundary value problem was identified as being a set of differential algebraic equations (DAE).
In Ellsiepen and Hartmann (2001) it was shown that the low-order embedded Diagonally
Implicit Runge-Kutta (DIRK) schemes (e.g. Ellsiepen (1999)) together with the multi-level
Newton-Raphson algorithm is particular suitable for solving elasto-plastic boundary value
problems. This class of methods preserve the sparsity present in the canonical implicit solution
procedure and it has also proven to have superior accuracy over the classical implicit solution
procedure. Moreover, since the method is embedded it provides an error estimation of the
local error which enables an efficient step-length control. The method has previously been
successfully applied to: visco-plasticity small strains (Ellsiepen and Hartmann (2001)); finite
strain viscoelasticity (Hartmann (2002)); metal powder plasticity (Hartmann and Bier (2008))
and incompressible materials (Hartmann et al. (2008)).
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In the present work the numerical sensitivity of the classical damage evolution law pro-
posed by Lemaitre (1985) will be compared to the damage evolution law proposed by Bonora
(1997). In contrast to the Lemaitre model, the Bonora model involves a threshold for the
damage evolution. This threshold poses a problem for both integration schemes and it is of
particular interest to investigate the performance of the DIRK scheme for this model. To
evaluate the performance of the numerical schemes and models use will be made of struc-
tural iso-error plots where the accuracy of the entire boundary value problem is evaluated.
This contrasts many previous studies where iso-error plots have been used to illustrate the
accuracy of the constitutive equations only.

Problem formulation

The balance of linear momentum is governed by the (static) principle of virtual work in the
reference configuration, Ω0, i.e.

R =

∫
∂Ω0t

δw · TdS +

∫
Ω0

δw · bdV=

∫
Ω0

δE :SdV ∀δw (1)

where T and b are the traction and body force vector. The second Piola-Kirchhoff stress and
the virtual strain are denoted S and δE. For a general class of elasto-plastic constitutive
models the irreversible evolution equation can be formulated as

ż = λN . (2)

where, λ, is the magnitude of the plastic increment. The internal state variables, z can for
instance represent plastic strains, backstress and damage variables. The generalized plastic
flow direction is a function of the internal variable z and current displacement field, i.e.
N = N (z,u). For rate-independent plasticity the yield condition, f = 0, will serve as an
algebraic constraint equation that sets the magnitude of λ.

Solution procedures

A spatial discreteization using the Finite-Element method of the system (1) and (2) results
in

R = R(a,zα, t) = 0

żα = λ̇αNα(zα,a)

f(zα,a) = 0

(3)

where the superscript α = 1..Ngp where Ngp represents the number of gausspoints. Moreover,
in the following discussion, we will collect the state-variables and displacement field, u in a
state vector, i.e. y = {zα, a} where a represents the nodal displacements.

In the present approach a DIRK scheme will be applied to the boundary value problem
(3). The solution to an intial value problem in a DIRK scheme is obtained as

y(tn+1) ≈ yn+1 = yn +Δtn

s∑
i=1

bif(t+ ciΔtn,y(tn + ciΔtn)) (4)

where bi are weight factors and ci coefficients that determine the location of the quadrature
points, stages. The number of stages is denoted s are defined by Tni = tn+ ciΔt. To evaluate
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(4) the stage values y(tn + ciΔtn) are required. The stage values are approximated in a
manner similar to (4), i.e.

y(tn + ciΔtn) ≈ Y ni = y(tn) + Δtn

s∑
j=1

aijẎ nj (5)

where a new set of weighting factors aij were introduced. The stage derivatives, Ẏ nj, present
in (5) are defined as

Ẏ nj = f(Tnj ,Y nj) (6)

Note that the quadrature points Tnj in (6) coincides with the quadrature points in (4). Inser-
tion of (6) into (5) results in a non-linear system in the stage variables Y ni, i.e. r(Y n1,Y n2, ...,

Y ns) = 0. This system can be solved for the stage variables Y n1, Y n2, ...,Y ns and once the
stage variables are calculated the updated state yn+1 can be calculated using (4). The DIRK
scheme employed in the present study is given by the Butcher tableau 1. Besides being an ef-

Table 1. Butcher tableau for the two stage DIRK-method proposed by Ellsiepen (1999).

γ γ

1 1− γ γ

1− γ γ

1− γ̂ γ̂
γ = 1− 1

2

√
2

γ̂ = 2− 5

4

√
2

ficient higher order integration scheme the DIRK scheme also provides an error control which
can be used to determine a suitable time step. Assume that ŷn+1 is the solution at tn+1 from
a RK-method of order q and that yn+1 is the solution from a RK-method of order q + 1.
Subtracting yn+1 from ŷn+1 provides an estimate for the local integration error, i.e.

κ = ŷn+1 − yn+1 (7)

The error estimation κ can be determined at virtually no extra cost using an embedded Runge
Kutta method since ŷn+1 is calculated using the same stages as for the lower order method
yn+1. For Ellsiepen’s method the bi coefficients for the embedded method given in the last
row of the tableau Tab 1. The error estimation for an embedded scheme is given by

κ = Δtn

s∑
i=1

(b̂i − bi)Ẏ ni. (8)

Numerical examples

To investigate the numerical sensitivity of the constitutive model in conjunction with the
presented numerical integration scheme the boundary value problem depicted in Fig. 1a will be
considered. Referring to Fig. 1b and Fig. 1c it can be concluded that the RK-based integration
schemes shows significant higher accuracy than the IE based integration scheme; the error is
approximately one magnitude lower than the IE based scheme. It is also emphasized that the
computational cost is almost identical for the simulations shown in Fig. 1a and Fig. 1b.
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Figure 1. a) Illustration of the boundary value problem used in the numerical simulation. b) Iso-error
(in isotropic damage) plot using the Runge Kutta b) Iso-error plot (in isotropic damage) using the
Implicit Euler method.
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Summary. Delamination detection in the supporting structures is an important issue in contemporary
engineering in terms of reliability and consistency of the structure. Many modern sensors are based on
piezoelectric effect or acoustic emission which may cause by-effects. The aim of the present paper is
to develop a complex approach for delamination detection in homogeneous and composite beams using
Euler-Bernoulli theory of bending, support vector machines (SVM) and artificial neural networks (ANN).
The significance of the proposed add-in system lies in its ability to make fast accurate calculation. The
applicability of the method has been tested by numerical experiments in the Matlab environment.

Key words: free vibrations, Euler-Bernoulli beam theory, delamination, support vector machines, neural

networks.

Introduction

Structural health monitoring (SHM) is one of the actual topics in contemporary engineering such
as aviation, material science, geodesy, metallurgy, etc. SHM detects damage or structural faults
at an early stage (manufacturing phase) before they reach a crucial level or cause significant
economical losses. Nowadays, monitoring is carried out using actuators or damage detection
sensors. Modern sensitive systems are based on piezoelectric effect, acoustic emission, etc.
[1, 2, 3]. Pressure, force and strain can be measured quite precisely. However, the techniques
are not risk-free: voltage unbalance degrades motor efficiency, causes rotor losses, increases
temperature [4]; emerging electrical field or resonance cause occasionally structural damage to
the surface [3, 5].

According to Baccarini, Silva, et al. [4] and P. Konar, P. Chattopadhyay [6], machine
vibration is the best indicator of the structure’s overall technical condition, and it can be used
as one of the first indicators of emerging defects. The authors asserted that each mechanical
fault, including delamination, generates vibrations in its own specific frequency domain [6].

This paper focuses on the calculations of delamination in homogeneous and composite beams
using the vibration-based damage detection methods and real-time measured structural response
signals viz a mode shape and a modal frequency. In order to improve conventional methods
for delamination detection, the presented complex method is combined of the support vector
machines and neural networks. The paper is divided into five sections. Section two describes
dynamic responses of vibrating beams. Section three provides an overview of support vector
machines and selection of the most informative patterns from a data set. Section four introduces
the complex technique for delamination calculation. Various numerical examples are presented
in section five.
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Dynamic response of vibrating beams with delaminations

A vibrating system with n delaminations can be considered as a combination of 3n + 1 beam
sections, connected at the delamination boundaries. Each section can be treated as a classical
Euler-Bernoulli beam model with a constrained mode, rigid connector and bending-extension
coupling [7]. The governing equation for the intact beam sections is

Di
d4wi

dx4
+ ρiAi

d2wi

dt2
= 0, (1)

where i=1,...,3n+1; wi(x, t) is the vertical displacement of the i-th beam section; Di is the
bending stiffness; ρi is the density of material; Ai is the cross-sectional area; x is the axial
coordinate and t is the time [8].

Integration of support vector machine

A vibrating system with a delamination is a non-linear system. Therefore, it is difficult to
establish a firm relationship between the frequencies and size/location of the delamination. In
this paper, the SVM is used to model the non-linear dynamics of a vibrating beam with a
delamination.

The SVM is a relatively new and powerful tool for pattern classification and regression
based on statistical learning theory [4]. It is capable of mapping non-linear functions quite
efficiently [9]. The main idea of SVM can be described as follows. The SVM attempts to put
separating hyperplane with maximum margin between the data points in the feature space so
that generalization is performed with the least error and the data is divided into two classes:
”positive” (+1) and ”negative” (−1) [9]. The latter concept can be extended to multi-class
problems, too. The nearest points that are used to define the margin are called support vectors
and they define the classifier. The hyperplane itself is oriented in such a way that the distance
between the hyperplane and the support vectors in each class is maximal.

Consider a sample training set (xi, yi), where xi ∈ R
n is the training data, yi ∈ {−1, 1} is the

class of labels for xi, ..., xN (N is the total number of samples). The hyperplane f(x) = 0 that
separates the data into two classes is a solution to the convex quadratic optimization problem:

Minimize
1

2
||w||2

Subject to yi(w
Txi + b) > 1, i = 1, ..., N,

(2)

where w is the orientation vector and b is the location parameter, respectively. Once the algo-
rithm is trained, it can be tested with new data points. For any new set of data, SVM uses w
and b to predict the class it should belong to.

If data to be classified is non-linearly separable, it is mapped onto a high-dimensional feature
space, where the linear classification is possible. A more detail description of SVM can be found
in [10].

Modeling system

In the present research paper on the delamination detection in vibrating systems, the focus is
placed on useful data selection by SVM before the patterns are fed into ANNs. Therethrough, the
risks of ANN overtraining are reduced and ANN are trained by the most informative patterns.

The complex approach includes the following steps. The modal frequencies of a vibrating
beam are computed in the Matlab environment. The obtained data is used for training SVMs.
Using quadratic or Gaussian radial basis functions, SVM divides the data into two groups: the
patterns that belong to the central part of the vibrating system and to its ends. According to
the group, two ANNs with different architectures are created and trained by the appropriate
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Table 1. Delamination prediction (height and distance) in a homogeneous clamped-clamped beam.

Exact location of delamination Predictions without SVM Predictions with SVM
Height Distance Height Distance R2 Height Distance R2

0.2000 0.0500 0.1983 0.0501 0.9999 0.1988 0.0502 1.0000
0.5000 0.0500 0.4030 0.0504 0.8278 0.4969 0.0505 0.9998
0.3200 0.1100 0.3264 0.1102 0.9051 0.3183 0.1024 0.9957
0.4400 0.1400 0.4420 0.1417 0.9997 0.4419 0.1401 0.9998
0.1700 0.2300 0.1696 0.2291 0.9975 0.1703 0.2303 0.9996
0.4700 0.2600 0.4702 0.2613 0.9972 0.4692 0.2602 0.9999
0.2000 0.3200 0.1986 0.3200 0.9999 0.1990 0.3196 1.0000
0.2600 0.3500 0.2710 0.3501 0.9892 0.2607 0.3497 1.0000
0.5000 0.4100 0.5027 0.4088 0.9998 0.4955 0.4092 0.9996
0.3800 0.5000 0.3651 0.5054 0.9457 0.3846 0.4988 0.9920

patterns using different learning algorithms (Levenberg-Marquardt, Bayesian). Once the system
is trained, it is ready for testing. When a frequency signal is received from the sensor, it is first
processed by SVM and then loaded into the appropriate ANN in order to detect the location
and/or size of the delamination.

Numerical simulations

First, the suggested approach for delamination detection was applied to the homogeneous beam
with clamped-clamped ends and a delamination of 0.2 unit length. The SVM was trained by
quadratic kernel function and divided a set of training data of 246 patterns into two groups: 196
patterns for the central part and 50 patterns specific to the ends. Each training pattern contained
six frequencies. Two ANNs were trained by the corresponding set and predicted the location
of the delamination: the height and the distance from the left end to the delamination. Table
1 shows the results of predictions with and without using the SVM. A coefficient of multiple
determination R2 shows the closeness of fit. Ideally, R2 is equal to 1. In the table, it is seen
that the complex approach is noticeably more accurate at the calculation of the delamination
at the ends of the beam than the alternative method.

Secondly, the proposed method was examined on a composite beam: T300/934 graphite/epoxy
beam with a [00/900]2s stacking sequence. The dimensions of the 8-ply beam are 127×12.7×1.016
mm3. The material properties for the lamina are E11 = 134 GPa; E22 = 10.3 GPa; G12 = 5
GPa; ν12 = 0.33 and ρ = 1.48 × 103 kg/m3. The SVM and ANNs computed the length of the
delamination in the mid-plane. Table 2 shows the results of the predictions by the complex ap-
proach and by the alternative method without SVM. The suggested technique is more accurate.
This is explained by the selection of the training patterns by SVM.

Concluding remarks

The main objective of this work was to develop a complex method for delamination detection in
vibrating systems using SVMs and ANNs. The frequency based training patterns were obtained
computationally in the Matlab environment since delamination influences significantly the fre-
quency domain of vibrating systems. The signals were classified by SVM into two classes: if the
delamination occurred near the edges of the system or in the central part. Next, the patterns
were fed into ANNs in order to compute the location/size of the delamination. The proposed
approach came up with very good results using only one SVM classification procedure and two
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Table 2. Delamination length prediction in a composite clamped-clamped beam.

Exact length of delamination Predictions without SVM Predictions with SVM
Length Length R2 Length R2

0.0066 0.0056 0.9999 0.0066 1.0000
0.0090 0.0081 0.9999 0.0090 1.0000
0.0410 0.0403 0.9999 0.0410 1.0000
0.0610 0.0612 1.0000 0.0610 1.0000
0.0802 0.0806 0.9999 0.0802 1.0000
0.1378 0.1373 0.9973 0.1379 0.9999
0.1642 0.1643 1.0000 0.1643 1.0000
0.2122 0.2104 0.9995 0.2120 1.0000
0.2546 0.2529 0.9998 0.2542 1.0000
0.3217 0.3216 1.0000 0.3220 1.0000

ANNs, and therefore it might be attractive for online monitoring.
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Summary. It is shown how artificial neural networks can be trained to predict dynamic response of a
simple nonlinear structure. Data generated using a nonlinear finite element model of a simplified wind
turbine is used to train a one layer artificial neural network. When trained properly the network is able
to perform accurate response prediction much faster than the corresponding finite element model. Initial
result indicate a reduction in cpu time by two orders of magnitude.
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Introduction

Time domain simulation of nonlinear systems using finite element method (FEM) analysis can
be computationally very expensive - especially in fatigue calculations where long response his-
tories are needed in order to obtain reliable time series statistics. The use of artificial neural
networks (ANN) combined with classical methods have shown promising results in reducing this
computational cost [1]. This paper presents a hybrid method for simulation of dynamic response
of a simple nonlinear structure. It is shown how an ANN can be trained to predict dynamic
response of a simplified model of a wind turbine. FEM models of nonlinear structures often
require fine element mesh discretization, small time step size and iterative procedures in order
to obtain equilibrium between internal and external forces. For large complex models this can be
very time consuming. The ANN’s ability to perform nonlinear mapping between a given input
and a system output makes it capable of response prediction without equilibrium iterations.
Hence, a properly trained ANN can save a lot of computational effort in response prediction.

Artificial neural network

The architecture of a typical one layer artificial neural network is shown in Figure 1. The ANN
consists of an input layer, a hidden layer and an output layer. Each connection between two
neurons in two neighboring layers has a weight. Training of an ANN is optimization of these
weights for a given data training set.

Following [2] the ANN set up and training procedure can be written as follows. The ANN
output is calculated by

y = W
�

o z, z = tanh
(
W

�

i x

)
, x0 ≡ z0 ≡ 1, (1)
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Figure 1. Sketch of artificial neural network.

where x is input vector, y is output vector and Wi and Wo are neuron connection weights be-
tween input and hidden layer and hidden and output layer, respectively. The tangent hyperbolic
is used as activation function between input and hidden layer.

The error function which is minimized during training can be written as

E (W) =
1

2

N∑
n=1

c∑
k=1

{y(xn;W)k − tnk}
2 +

1

2
αW2, (2)

where y is the ANN output, t is the target value and α is the weight decay that controls the
value of the weights and prevents the ANN from overfiting to noise in the training data. Optimal
weights are found with an iterative procedure stepping in weight space towards minimal error.
The weight update is done by gradient decent going the opposite direction of the cost functions
gradient as in (3).

Wnew = Wold +ΔW, ΔW = −η
∂E (W)

∂W
, (3)

where η is the learning step size parameter. This parameter can either be constant or updated
during the training of the ANN. For this application the dynamic learning step size parameter
is adjusted for each iteration so that it is increased if the training error is decreased compared
to previous iteration step and reduced if the training error increases.

Structural model

To illustrate the hybrid method a simplified model of a wind turbine is set up, see Figure 2.
The height of the wind turbine is 100 m. The diameter of the turbine steel tower is 4 m with a
wall thickness of 0.1 m. At the top of the tower a 100 · 103 kg mass is placed to represent the
nacelle and turbine blades. The lowest eigenfrequency of the structure is 0.3 Hz. The load f(t)
applied to the structure corresponds to the horizontal load on a 100 m diameter rotor in a 15
m/s wind. The mean wind load is 284 kN with a standard deviation of 44 kN.

The FEM model of the structure uses co-rotational beam element formulation as described
in [3]. This formulation separates beam motion into two parts: a rigid body motion associated
with a local frame of reference, and a deformation of the beam within this frame. The local
deformation of the beam element implies geometrical stiffness contributions which depend on
the deformation. Thus, we have a nonlinear model which can handle large deformations, when
the governing equation is given as
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Mr̈+Cṙ+K(r)r = f(t). (4)

The lumped masses and beam stiffness contributions are assembled in a mass matrix M and
a stiffness matrix K, respectively. The beam is Rayleigh damped through damping matrix C

introducing 3 % damping to the lowest vibration mode of the wind turbine. The force vector f

consists of external force components at each degree of freedom (DOF) for each time step and
the vector r contains the degrees of freedom (DOF) of the structure. Note that the components
in the stiffness matrix K dependent on the deflection r of the structure. In the FEM model the
turbine tower is divided into 10 elements.

The response of the structure is calculated by Newmark’s method of direct integration. The
Newton-Raphson method is used to achieve force equilibrium in each time step and the update
of the stiffness matrix follows the proce dures described in [3]. The time step size is 0.1 s and
equilibrium is assumed when force and displacement residuals are below 1 %.
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Figure 2. a) Harmonic wind load, b) Sketch of wind turbine, c) Simple turbine FEM model.

Based on the response history data generated by the FEM model an ANN is trained to
predict the future dynamic response of the wind turbine.

Simulation

The ANN is designed and trained to predict the horizontal deflection of the wind turbine at
the location of the mass M, see Figure 2. Note that the ANN output only gives the horizontal
response of top and hence, as oppose to the FEM model, not the response of all model DOFs.
The load together with the state space variables (r, ṙ) of previous time steps are used as ANN
input

xt = [f(t) . . . f(t− d) r(t− 1) ṙ(t− 1) . . . r(t− d) ṙ(t− d)]T , (5)

where d is number of previous time steps included in the input i.e. the model memory. ANN
output is the current deflection and velocity

yt = [r(t) ṙ(t)]T (6)

Since the ANN in this case simulate a theoretical model of a physical system and therefore
replicate an exact solution to the system equations of motion there is no noise in the target
output data. Therefore the weight decay in (2) is set to zero (α = 0) in this example.

The wind turbine response history generated by the FEM model (4) is divided into a training
and a test set as shown on Figure 3. Out of the 100 s response history the first 80 s is used
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Figure 4. Exact FEM solution together with ANN simulation.

for training the ANN and the last 20 s is used for testing. With a time step size of 0.1 s and a
dominating vibration frequency of 0.3 Hz, this gives a training set of 800 points covering about
24 vibration cycles. Parameter investigations not included in this paper show that an accurate,
compact and robust ANN is obtained with 50 units in the hidden layer and 10 previous time
steps. After training the ANN is able to predict the wind turbine response to a similar wind
load history as the one used to generate the training data. The results of simulations using FEM
model and ANN is shown in Figure 4. It is seen that the ANN captures the dynamics of the
system very well and predicts the deflection quite accurately.

Concluding remarks

In the example presented in this paper the reduction in cpu time spend on a simulation of 10 min.
wind is about a factor of 100 when using the ANN compared to the FEM - that is when the ANN
is set up and trained. This factor is obviously dependent on the structure, the loading, model
configuration etc. However, the examples indicates that the method holds a great potential.
Furthermore, the reduction in calculation cost may be increased even further if it is possible to
skip a few post possessing steps so that, instead of just predicting structural response, the ANN
can be trained to predict material stresses or structural damage directly based on force input.
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Summary. A finite element formulation of Lighthill’s acoustic analogy used to compute aeroacoustic
noise is studied in the present paper. It is a hybrid method where as a first step the acoustical sources are
computed from an incompressible CFD simulation using OpenFOAM. These sources are then used in the
CALFEM finite element toolbox which solves Lighthill’s equation. The method has been tested on the
case of flow past a generic side view mirror mounted on a flat plate and the results has been compared
to measurements found in the literature.

Key words: aeroacoustics, finite element method, CFD, hybrid methods, computational aeroacoustics,

Lighthill’s acoustic analogy

Introduction

One of the main difficulties in the area of Computational Aeroacoustics (CAA) is the large
disparity in energy and length scales between the fluid mechanics and acoustics. Resolving the
acoustics directly within a CFD simulation solving Navier-Stokes equations usually puts too
high demands on resolution and numerical schemes to be practically possible. Therefore it is
common to work with hybrid methods that treat the fluid mechanics and acoustics separately.
This enables the use of different domains, mesh resolution, discretisation and even solution
methods.

Theory

Most hybrid methods in CAA, including the one in the present work, are based on, or derived
from, the following inhomogeneous acoustic wave equation originally derived by Lighthill [1]

1

c20

∂2p′

∂t2
− ∂2p′

∂x2i
=

∂2Tij

∂xi∂xj
(1)

Tij = ρuiuj + δij(p
′ − c20ρ

′)− τij . (2)

where p′ are the pressure fluctuations, ρ′ are the density fluctuations, ui are the velocity com-
ponents, c0 is the speed of sound, τij are the viscous stresses and δij is the Kronecker delta.
If the right hand side is independent of the left hand side, this equation can be seen as an
inhomogeneous wave equation in an isotropic medium at rest. This means that all the sound
propagation is separated from the sound generation or in other words, the acoustic field can not
affect the flow field. In general the flow and the acoustics cannot be separated, but there are
many cases when this assumption applies.
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It is most common to solve (1) or another analogy formulation derived from (1), such as the
one by Ffwocs-Williams and Hawkings [2] which takes into account solid and moving surfaces, by
using Green functions and integrals. These are particularly advantageos for large open acoustic
domains, such as airframe noise. In the present work a finite element formulation of (1) is
studied. This was first suggested by Oberai et al. [3] and has also been studied by Escobar [4]
among others. This approach is more suitable for confined aeroacoustic problems where multiple
reflections or if coupled structure-acoustical effects are important as both of these effects are
taken into account by the FEM solver. In contrast, these effects are difficult to include in integral
formulations.

FEM formulation

By doing the usual steps in a FEM derivation, multiplying with a test function v integrating
over the whole acoustic domain Ω and applying Green-Gauss theorem the weak form of (1) is
obtained.

1

c20

∫
Ω

v
∂2p′

∂t2
dV +

∫
Ω

∂v

∂xi

∂p′

∂xi
dV =

∫
∂Ω

v
∂p′

∂ni
dS +

∫
Ω

v
∂2Tij

∂xi∂xj
dV (3)

After applying the finite element approximation this becomes

Mp̈+Kp = fs + fq (4)

M =
1

c20

∫
Ω

N
T
NdV, K =

∫
Ω

(∇N)T∇NdV, fs =

∫
∂Ω

N
T ∂p′

∂ni
dS, fq =

∫
Ω

N
T ∂2Tij

∂xi∂xj
dV (5)

where N are the element shape functions and p are the nodal values of p′.
However, the implemented method solves the problem in the frequency domain:

(−ω2
M+K)p̂ = f̂s + f̂q (6)

This enables the use of a simple absorbing boundary conditions. The relation between displace-
ment and pressure can be written as

∂p′

∂n
= − iρ0ω

Z
p′ (7)

where Z is the impedance. This applied to the boundary term in (6) giving.

fZ = −iωρ0

∫
∂ΩZ

N
T 1

Z
p′dS = −iωρ0

∫
∂ΩZ

N
T 1

Z
NdSp̂ (8)

Finally the set of equations solved by the acoustical solver are

(−ω2
M+ iωC+K)p̂ = f̂s + f̂q, C = ρ0

∫
∂ΩZ

N
T 1

Z
NdS (9)

Implementation

An overview of the implemented method is shown in figure 1. First the CFD solver, in this
case OpenFOAM, is run to compute the acoustical sources. These sources are interpolated
to the acoustic mesh, which is much coarser than the CFD mesh. They are also converted
to the frequency domain using FFT. Finally the acoustical solver CALFEM is run using the
interpolated and converted sources as input.
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Figure 1. Overview of the implemented method.

Figure 2. Mirror geometry.

Interpolation

It is important that the interpolation is carefully done as this can affect the result dramatically
otherwise. To obtain a good result the interpolation has to conserve the acoustic energy. What
is done is that first the acoustical source density is integrated over the cell in the CFD mesh
to create an acoustical source focused at the centre of the cell. Then it is determined in which
element in the acoustic mesh the CFD cell centre is located in. After that the local generalised
coordinates are computed from the global coordinates. This is done by a Newton-Rhapson loop
since it is a non-linear problem. Finally the standard FE shape functions are used to interpolate
the contribution of the CFD cell to the nodes in the acoustical element.

Test case

To test the method the aerodynamically induced noise around a generic side view mirror was sim-
ulated. The mirror is a half cylinder with a quarter sphere on the top, see figure 2. The freestream
velocity in the data used was U = 39 m/s. Measurements were performed by Daimler-Chrysler
covered in [5], [6] and [7] and some of the data kindly provided by Dr. Franz R. Klimetzek at
Daimler. Since the Mach number is low and there is no (significant) acoustic coupling with the
flow the CFD simulation is incompressible. Turbulence was modeled using large eddy simulation
(LES) with the Smagorinsky model. Since the flow can be seen as incompressible and there are
no significant differences in temperature, the source term in (2) is approximated as

Tij ≈ ρuiuj (10)

The computed sound pressure levels at a microphone located at a position in the far field
is shown in figure 3. The line marked non-conservative uses an interpolation tool included in
OpenFOAM which does not conserve the acoustic energy. By using consverative interpolation
as described in the previous section the result is significantly improved and a slope somewhat
similar to the measurements can be seen. However the noise levels are far over predicted. The
cause of this is not yet known. A grid sensitivity study on the acoustic mesh showed that a fairly
coarse mesh can be used. There was hardly any difference at all between an acoustic mesh with
about 35 000 elements and 280 000 elements. By comparison the CFD-mesh used had around
3 million cells. The acoustic grid insensitivity and the importance of conservative interpolation
is similar to the study by Escobar [4], but in his test cases the result is not significantly over
predicted. Different ways to discretise the source term (10) was also investigated. This included
different schemes from OpenFOAM and applying an FE-based method described in [4]. The
FE-based method increased the over prediction compared to the ordinary central differencing
OpenFOAM scheme, see figure 4.
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Summary. This paper focuses on analyzing the significance of the method used for the numerical
integration of the internal forces of linear cohesive elements. The currently used 4 point Newton-Cotes
integration introduces a large error and is one of the limiting factors for utilizing a smaller number of
elements in the cohesive zone. It is shown that for other integration methods larger elements can be
utillized with less iterations and yield more accurate results.
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Introduction

This work is conducted by Siemens Wind Power A/S in collaboration with Aalborg University.
Siemens Wind Power A/S is one of the leading manufacturers of wind turbines. The blades of the
wind turbine are made as a laminated glass-epoxy-balsa sandwich structure. The main failure
mechanism of such a structure is delamination damage from a single load or cyclic loading. Thus,
it is important to be able to predict the onset of damage delamination and its development. The
work presented here is conducted within the framework of cohesive zone modeling that was first
introduced in [1, 4] and is an indirect way of applying classical fracture mechanics where the
critical energy release rate is represented by the work of tractions applied on the crack faces.
There are several research contributions within the field of implementing the cohesive zone
model into the finite element method. The element investigated in this paper is the bilinear,
8-noded, zero thickness interface element for 3D models with a capability of simulating mixed
mode delamination using a bilinear traction-separation law [2, 3, 5].

Currently, the implementations of the cohesive zone model are not suitable for simulating
delamination damage in large structures in the magnitude of meters when the cohesive zone is
in the magnitude of a few millimeters, because of the high resolution of elements needed with a
high computational effort as a consequence. Furthermore, the perspectives of using the cohesive
elements with a stress-cycle criterion for modeling fatigue driven delamination calls for a better
prediction of the in-situ stresses in the cohesive zone, which traditionally is solved using smaller
elements.

So far the work on increasing the solution speed of delamination simulations by utilization of
larger elements has focused on relaxing the penalty stiffness of the cohesive law and/or the onset
displacements [6]. Both methods are a way to enlarge the cohesive zone and thereby having a
higher resolution of elements in the zone without decreasing the element size. However, the
downside of relaxing the onset displacement has a direct influence on the ability to predict the
onset of delamination damage. This is not important when simulating simple precracked struc-
tures like the double cantilevered beam (DCB) test specimen, but in the case of analyzing real
structures like wind turbine blades without precracks the correct simulation of onset becomes

85



a very important part of the delamination damage simulation. The penalty stiffness influences
the overall structural response as it introduces a, within the cohesive framework, non-physical
compliance to the interface. Furthermore, the chosen bilinear relation between onset displace-
ment, penalty stiffness and critical energy release rate constrains the possibilities for relaxing
the penalty stiffness and the onset displacement.

In 2D models of DCB specimens an oscillating response curve is observed. This has led to the
idea that the internal forces and stiffness of the element are varying in an unattended way because
of an erroneous prediction of the internal forces in the numerical integration of the element. The
errors introduced by different integration methods based on the Newton-Cotes integration rule
are evaluated and simulation of a DCB-specimen is conducted to investigate integration routines
in order to get accurate simulation results at the least possible computational effort.

Analysis of the integration error

The cohesive element, see [2, 3, 5] for details, is programmed in Maple 13 and evaluated in the
entire domain for different opening modes in order to investigate the equations being integrated
and how well they obey the restrictions for exact integration using the Newton-Cotes integration
rule. The equation for the displacement interpolation is bilinear in the natural coordinates η and
ξ. The equation for the opening displacements, Δ of the element are polynomial fractions with
products of ξn and ηn where n = 0,1,2 in both nominator and denominator. The equation for the
secant stiffness, (1 − d)K (K is the penalty stiffness) and damage parameter, d are polynomial
fractions with products of ξn and ηn where n = 0,1,2,3,4 in both nominator and denominator.
The equation for the stresses, τ are polynomial fractions with products of ξn and ηn where n
= 0,1,...,6 in both nominator and denominator. Furthermore, the absolute value function is
present in both the nominator and denominator of the equations for the secant stiffness and
stresses. The equations for Δ, d, (1 − d)K and τ are plotted in natural coordinates in Figure
1 for two different opening configurations. Material properties used for the element are for UD
glass-epoxy laminate. The nodal displacement are chosen to illustrate the characteristic shape
of the normal stresses and the secant stiffness.

Mode I opening [m] Damage parameter, d Secant stiffness, (1 − d)K Normal stress, τ

Figure 1: The mode I opening, damage parameter, secant stiffness and normal stress are shown
for two different mode I opening configurations in natural coordinates.

It is seen that the surface for τ is concave-down. This means that the Newton-Cotes inte-
gration of τ is in general underestimated. (1− d)K is neither concave-up or concave-down and
therefore the error can be both positive and negative.
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Different integration methods based on a composite Newton-Cotes trapez integration rule
have been implemented into a user defined element routine of the cohesive element in Abaqus
6.10. They fall into two categories; evenly distributed integration points and adaptive placement
of the integration points onto the damaged part of the element, see Figure 2. The damaged part
of the element is defined as the smallest rectangular area that contains the crack front. Results
of the methods are presented for 4, 9, 25 and 10 integration points for the evenly distributed
integration points and 9 and 36 integration points for the adaptive placement of integration
points. The new integration methods are only active when damage is developing in the element.
Before and after damage the regular 4 point Newton-Cotes integration is used.

1 2 3 4

Crack front

Figure 2: Location of integration points for the Newton-Cotes integration points for evenly
distributed integration points (1 and 2) and placement of integration points in the damaged
zone (3 and 4).

It is difficult to exactly quantify the error introduced with different integration methods
because it is dependent on the opening configuration of the element, which in relation to a real
structure depends on mesh, elements size, material properties and boundary conditions. In order
to get an indication of the magnitude of error introduced by the different integration methods
the error is determined for the opening configuration in Table 1 as it is scaled from 0.1 to 1 for
a 1mm × 1mm element. The progression of the crack front for this opening is shown in Figure
3.

Node no. z

5 4 · 10−6 m
6 4 · 10−4 m
7 4 · 10−3 m
8 4 · 10−4 m

0.1

0.3

0.9

Table 1: Out-of-plane displacements of nodes.
All other nodal displacements are zero.

Figure 3: Crack front progression at scale fac-
tor equal 0.1, 0.3 and 0.9.

In Figure 4 the integration error is presented for the τ and (1 − d)K. From these results it
is evident that the integration error is significant.

Analysis results

The integration methods are tested on a 3D solid finite element model. The model is a DCB
specimen with mechanical properties of UD glass-epoxy. The dimensions h × l × w = 5mm ×
110mm × 23mm with a precrack length of 46mm. In the simulations a mesh with cohesive
elements of 0.5mm is used. The fracture mechanical properties used are GIc = 613J/m2,
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Figure 4: Graphs showing the error of integrated normal stress and secant stiffness as it develops
when the nodal displacement in Table 1 are scaled from 0.1 to 1.

GIIc = 2252J/m2, mode I onset stress = 12MPa , mode II onset stress = 22MPa and the
opening penalty stiffness = 108MPa and penetration penalty stiffness = 108MPa.

Table 2: Total number of iterations.

Integration method Iterations 0.5mm

Evenly 4 741
Evenly 100 223
Adaptive 9 not converged

There is a clear speed advantage of using a higher number of integration points where it is
seen that there is almost a reduction in the number of iterations by a factor of 4. Furthermore,
the structural response is smoother with significantly smaller oscillations.

List of References

[1] G. Barenblatt. The Mathematical Theory of Equilibrium Cracks in Brittle Fracture, volume 7
of Advances in Applied Mechanics, pages 55–129. Elsevier, 1962.

[2] P. P. Camanho, C. G. Davila, and M. F. de Moura. Numerical Simulation of Mixed-
Mode Progressive Delamination in Composite Materials. Journal of Composite Materials,
37(16):1415–1438, August 2003.

[3] C. G. Dávila, P. P. Camanho, and A. Turon. Cohesive Elements For Shells. Technical report,
2007.

[4] D. S. Dugdale. Yielding of steel sheets containing slits. Journal of the Mechanics and Physics

of Solids, 8(2):100–104, May 1960.

[5] A. Turon, P. P. Camanho, J. Costa, and C. G. Dávila. A damage model for the simulation of
delamination in advanced composites under variable-mode loading. Mechanics of Materials,
38(11):1072–1089, November 2006.

[6] A. Turon, C. Davila, P. Camanho, and J. Costa. An engineering solution for mesh size
effects in the simulation of delamination using cohesive zone models. Engineering Fracture

Mechanics, 74(10):1665–1682, July 2007.

88



Proceedings of the 24th Nordic Seminar on Computational Mechanics
J. Freund and R. Kouhia (Eds.)
c©Aalto University, 2011

A residual based a posteriori error estimator
for post-processed MITC plate elements

Lourenço Beirão da Veiga1, Jarkko Niiranen2, and Rolf Stenberg3

(1)Dipartimento di Matematica ”F. Enriques”, Università di Milano, via Saldini 50, 20133 Mi-
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Summary. This contribution presents a residual based a posteriori error estimator for the post-processed
MITC finite element methods approximating the solution of the Reissner–Mindlin plate bending prob-
lem. The error estimator utilizes a post-processing method improving the accuracy of the deflection
approximation of the original MITC method.

Key words: Reissner–Mindlin plates, MITC finite element methods, a posteriori error estimates

Introduction

For thin plate structures, the most commonly used models in engineering applications are the
Kirchhoff–Love and Reissner–Mindlin plate models; the latter, in particular, being capable of
modelling a wide range of applications of moderately thick plate structures as well. Regarding
finite element approximations, the MITC family [1, 3, 6] is propaply the most reputable method.
A posteriori error analysis of the MITC elements for adaptive mesh refinements has been recently
accomplished in [4, 5]. This paper presents a corresponding error indicator with reliability and
efficiency results [2] for the post-processed MITC methods [6].

Reissner–Mindlin plate model

Let Ω be a polygonal domain in R
2 representing the midsurface of a plate of thickness t. We

assume that the boundary Γ of Ω is a union of five disjoint sets defined as Γ = ΓCH
∪ ΓCS

∪
ΓSH

∪ ΓSS
∪ ΓF , with each set above being a finite union of connected components. The plate

is (respectively hard and soft) clamped on ΓCH
∪ ΓCS

, (respectively hard and soft) simply
supported on ΓSH

∪ΓSS
and free on ΓF . For simplicity, we assume that all boundary conditions

are homogeneous, and that the union of the clamped and simply supported parts has a positive
measure in the sense that the rigid body motions of the plate can be neglected. Finally, let the
plate be subjected to a vertical loading f which already includes the standard scaling by t3.

The variational spaces of kinematically admissible deflections and rotations are defined,
according to the boundary conditions listed above, as

W = {v ∈ H1(Ω) | v = 0 on ΓCH
∪ ΓCS

∪ ΓSH
∪ ΓSS

}, (1)
V = {η ∈ [H1(Ω)]2 | η · n = 0 on ΓCH

∪ ΓCS
, η · τ = 0 on ΓCH

∪ ΓSH
}, (2)
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with τ denoting the unit tangent to Γ obtained by an anti-clockwise rotation of the outward
normal n. The scaled bending bilinear form is defined as

a(φ,η) = (Aε(φ), ε(η)) =
1
6
{(ε(φ), ε(η)) +

ν

1 − ν
(div φ, div η)}, (3)

with A denoting the (scaled) fourth order tensor of the bending moduli, ε denoting the symmetric
gradient and ν standing for Poisson’s ratio and (·, ·) standing for the standard scalar product in
L2(Ω). The Reissner–Mindlin plate bending problem can be now written in the following form:

Variational formulation. Find the deflection w ∈ W and the rotation β ∈ V such that

a(β,η) + t−2(∇w − β,∇v − η) = (f, v) ∀(v,η) ∈ W × V . (4)

The shear force is defined as q = (∇w − β)/t2 ∈ Q = [L2(Ω)]2.

MITC finite elements

In what follows, by Ch we denote the triangulation of Ω, and by Eh the set of all its edges. As
usual, for the mesh size we use the notation h = maxK∈Ch

hK , where hK is the diameter of
element K. The space of polynomials of degree k on K is denoted by Pk(K). By C we denote
positive constants independent of both the thickness t and the mesh size h.

The finite element subspaces Wh ⊂ W and V h ⊂ V are defined as

Wh = {v ∈ W | v|K ∈ Pk(K) ∀K ∈ Ch}, (5)

V h = {η ∈ V | η|K ∈ [Pk(K)]2 ⊕ [Bk+1(K)]2 ∀K ∈ Ch}, (6)

with the polynomial degree k ≥ 2 and the local ”bubble function space” Bk+1(K) = {bp | p ∈
P̃k−2(K), b ∈ P3(K), b|E = 0 ∀E ⊂ ∂K}, where P̃k−2(K) denotes the space of homogeneous
polynomials of degree k − 2 on the element K and E denotes an edge to K. We denote the
rotated Raviart–Thomas space of order k − 1 by

Qh = {r ∈ H(rot , Ω) | r|K ∈ [Pk−1(K)]2 ⊕ (y,−x)P̃k−1(K) ∀K ∈ Ch}. (7)

Note that the requirement Qh ⊂ H(rot , Ω) implies that the tangential components of functions
in Qh are continuous along inter element boundaries. Next, we define the reduction operator
Rh : [H1(Ω)]2 → Qh, with RK = Rh|K , by the conditions

〈(RKη − η) · τE , p〉E = 0 ∀p ∈ Pk−1(E) ∀E ⊂ ∂K, (8)
(RKη − η,p)K = 0 ∀p ∈ [Pk−2(K)]2, (9)

where τE denotes a unit tangent to E. The notations (·, ·)K and 〈·, ·〉E stand for the standard
inner products in L2(K) and L2(E), respectively.

Method. [3] Find the deflection wh ∈ Wh and the rotation βh ∈ V h such that

a(βh,η) + t−2(Rh(∇wh − βh),Rh(∇v − η)) = (f, v) ∀(v,η) ∈ Wh × V h. (10)

The discrete shear force is defined as qh = Rh(∇wh − βh)/t2 = (∇wh − Rhβh)/t2 ∈ Qh.

For smooth solution fields, the following optimal a priori error estimate holds:

Theorem 1. [3] Let the solution of the Variational formulation be sufficiently regular. For the
error of the solution obtained by the Method, there exists a positive constant C such that

||w − wh||H1(Ω) + ||β − βh||H1(Ω) + t||q − qh||L2(Ω) + ||q − qh||V ′ (11)

≤ Chk
(||w||Hk+1(Ω) + ||β||Hk+1(Ω) + ||q||Hk−1(Ω) + t||q||Hk(Ω)

)
. (12)
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Next, we briefly review the post-processing procedure introduced and analyzed in [6]. First,
we define an interpolation operator into the discrete deflection space Wh as follows:

Definition. Let a and E, respectively, be a vertex and an edge of a triangle K. The interpolation
operator Ih : Hs(Ω) → Wh, s > 1, IK = Ih|K ∀K ∈ Ch, is defined by the conditions

(v − IKv)(a) = 0 ∀a ∈ K, (13)
〈v − IKv, p〉E = 0 ∀p ∈ Pk−2(E) ∀E ⊂ K, (14)
(v − IKv, p)K = 0 ∀p ∈ Pk−3(K). (15)

In the post-processing, we use the splitting Pk+1(K) = Pk(K) ⊕ Ŵ (K) ⊕ W (K) with

Ŵ (K) = {v ∈ Pk+1(K) | IKv = 0, (v, p)K = 0 ∀p ∈ P̃k−2(K)}, (16)
W (K) = {v ∈ Pk+1(K) | IKv = 0, 〈v, p〉E = 0 ∀p ∈ P̃k−1(E) ∀E ⊂ K}. (17)

Post-processing scheme. For each triangle K ∈ Ch, find the local post-processed finite element
deflection w∗

h|K ∈ Pk+1(K) = Pk(K) ⊕ Ŵ (K) ⊕ W (K) such that Ihw∗
h|K = wh|K ,

〈∇w∗
h · τE ,∇v̂ · τE〉E = 〈(βh + t2qh) · τE ,∇v̂ · τE〉E ∀E ⊂ ∂K, ∀v̂ ∈ Ŵ (K), (18)

(∇w∗
h,∇v̄)K = (βh + t2qh,∇v̄)K ∀v̄ ∈ W (K). (19)

It should be pointed out that the post-processed deflection is conforming since (βh +t2qh) ·τ
is continuous along inter element boundaries. Furthermore, it holds that βh + t2qh = ∇wh +
(I − Rh)βh. With respect to the convergence rate of Theorem 1 for the original deflection
approximation, an improvement of order O(h + t) holds for the convergence rate of the post-
processed deflection:

Theorem 2. [6] For a convex fully clamped plate, there exists a positive constant C such that

‖w − w∗
h‖1 ≤ C(h + t)hk

(||w||Hk+2(Ω) + ||β||Hk+1(Ω) + ||q||Hk−1(Ω) + t||q||Hk(Ω)

)
. (20)

Finally, we define a mesh dependent norm coupling the deflection and the rotation as

|||(η, v)|||2 = ||η||2H1(Ω) +
∑

K∈Ch

1
t2 + h2

K

||∇v − η||2L2(K). (21)

Proposition. [2] There exists a positive constant C such that

|||(β − βh, w − w∗
h)||| ≤ Chk

(||w||Hk+2(Ω) + ||β||Hk+1(Ω) + ||q||Hk−1(Ω) + t||q||Hk(Ω)

)
. (22)

A posteriori error estimates

Let first the moment operator be defined as m(φ) = Aε(φ) and let a new approximation for
the shear force be defined as q∗

h = (∇w∗
h − βh)/t2. Then we define the following local error

indicators, for all elements K and edges E of the mesh Ch:

η̃2
K = h2

K(h2
K + t2)||f + div qh||2L2(K) + h2

K ||div m(βh) + qh||2L2(K), (23)

η2
E = hE(h2

E + t2)||�qh · n�||2L2(E) + hE ||�m(βh)n�||2L2(E), (24)

η2
CS ,E = hE ||�τ · m(βh)n�||2L2(E), (25)

η2
SH ,E = hE ||�n · m(βh)n�||2L2(E), η2

SS ,E = hE ||�m(βh)n�||2L2(E), (26)

η2
F,E = hE ||�m(βh)n�||2L2(E) + hE(h2

E + t2)||�qh · n�||2L2(E), (27)
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where �·� represents the standard jump operator which is assumed to be equal to the function
value on boundary edges. Moreover, for each K ∈ Ch let us define the consistency terms

(σ∗
K)2 =

t4

t2 + h2
K

||q∗
h − qh||2L2(K) , (σ′

K)2 = ||rot (I − Rh)βh||2L2(K). (28)

Then, for any element K ∈ Ch, the local error indicator is defined as

ηK =
(
η̃2

K +
1
2

∑
E∈I(K)

η2
E +

∑
E∈CS(K)

η2
CS ,E +

∑
E∈SH(K)

η2
SH ,E

+
∑

E∈SS(K)

η2
SS ,E +

∑
E∈F (K)

η2
F,E + (σ′

K)2 + (σ∗
K)2

)1/2
, (29)

where I(K) denotes the edges of the element K lying in the interior of Ω, while CS(K), SH(K),
SS(K) and F (K) represent the edges of K on ΓCS

, ΓSH
, ΓSS

and ΓF, respectively. Finally, the
global error indicator is defined as

ηh =
( ∑

K∈Ch

η2
K

)1/2
. (30)

The following reliability end efficiency results show that the error estimator proposed can be
used as a basis for adaptive mesh refinements and error estimation:

Theorem 3. [2] There exist positive constants C and C ′ such that

|||(β − βh, w − w∗
h)|||2 + t2||q − qh||2L2(Ω)

+t4||rot (q − qh)||2L2(Ω) + ||q − qh||2V ′ ≤ Cη2
h, (31)

η2
h ≤ C ′(|||(β − βh, w − w∗

h)|||2 + t2||q − qh||2L2(Ω)

+t4||rot (q − qh)||2L2(K) + ||q − qh||2V ′ + osc(f)2
)
. (32)
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Summary. The quasi-Newton method provides quick and reliable acceleration of self consistent itera-
tions for systems where the Jacobian is unavailable. The inverse Jacobian is approximated by a low rank
matrix that makes the iteration suitable for large systems.
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Introduction

Several applications of computational science and engineering, such as plasticity and electronic
structure calculations, result in systems of nonlinear equations. When the system size is small
and the Jacobian of the nonlinear system is available Newton-like methods offer an efficient
solution method. However, for large systems or when the Jacobian is unavailable it is no longer
possible to use methods that rely on the Jacobian.

The prototype nonlinear system of equations is the fixed point problem, find x ∈ R
n such

that
g(x ) = x , (1)

where g : Rn → R
n. The fixed point problem can easily be transformed into the self consistent

field problem, find x ∈ R
n such that

f(x ) = 0 , (2)

where f(x ) := x − g(x ).
Given an initial guess, x 0, equation (2) can be solved by a sufficiently under relaxed fixed

point iteration
x k+1 = x k − βg(x k). (3)

Here β ∈ (0, 1] is the under relaxation parameter. Unfortunately, for several systems β � 1 is
necessary for the method to converge, and the rate of convergence suffers. For large systems the
evaluation of (2) becomes very expensive, and the convergence rate of the fixed point iteration (3)
becomes prohibitively slow.

The number of evaluations of (2) can be reduced by using an accelerator to improve rate
of convergence. Electronic structure calculations are often accelerated by Pulay’s method [5].
However, while Pulay’s method usually converges quickly, it sometimes fails to converge [4, 1, 2].
The secant condition based quasi-Newton method provides a method that is nearly as fast as
Pulay’s method, while offering improved robustness.
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The quasi-Newton method

If the Jacobian of f is unavailable, it is not possible to use Newton’s method to solve (2). Instead
a quasi-Newton method, where an approximate inverse Jacobian, G, is substituted in place of
the exact inverse Jacobian. The result of the evaluation of (2) can be used to improve G. The
quasi-Newton method then becomes

x k+1 = x k − βGkf k, (4)

where we set f k = f(x k), and use G0 = σI as the initial approximation of the inverse Jacobian.
There are several available updates for G, and Broyden’s type 2 update offers a robust low

rank update scheme [3, 4, 1]. Broyden’s second update is based on requiring that Gk+1 satisfies
the secant condition

Gk+1Δf k = Δx k (5)

in the recently evaluated direction, where Δx k = x k+1 − x k and Δf k = f k+1 − f k. It is
simultaneously required that Gk+1 does not change in directions orthogonal to the evaluated
direction

Gk+1q = Gkq ∀q such that qTΔf k = 0. (6)

Together these requirements result in the type 2 update formula

Gk+1 = Gk + (Δx k −GkΔf k)
Δf T

k

Δf T
kΔf k

. (7)

For large systems Gk cannot be directly computed, instead the low rank structure of Gk must
be exploited.

The quasi-Newton method provides quick and reliable acceleration. It turns out that the rate
of convergence is nearly the same for Pulay’s method and the quasi-Newton method. Broyden’s
update also makes the quasi-Newton method more robust, and it often converges when Pulay’s
method fails to reach a solution. Furthermore, the convergence rate of the quasi-Newton method
is relatively smooth, and the control parameters, β and σ, can be dynamically adjusted to
increase performance of the accelerator.
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Summary. Multiscale problems appear in many applications in the engineering sciences, for instance,
composite materials, porous media flow, and fluid mechanics. A common feature of multiscale problems
is that they are very computationally challenging and often impossible to solve to an acceptable tolerance,
with standard methods, using only one mesh.

Over the last fifteen years several numerical methods have been proposed for solving partial differential
equations with rapidly varying coefficients, see e.g. [2, 3]. In a series of papers [5, 6, 4] we have developed
an adaptive variational multiscale method (AVMS), and in the present paper we adopt the framework
presented in [5], using discontinuous Galerkin basis functions. The method is applied to a hyperbolic
model problem with multiscale features in the advection coefficient.

Key words: multiscale, discontinuous Galerkin, hyperbolic problem

Introduction

We seek the concentration u such that,

u̇+ div(σu) = f, in Ω× I,

where I = (0, T ) is the time interval, f is a source term, and σ is a given advection field.
We use a discontinuous Galerkin method of first order, as described in [1], to solve the

problem and for some suitable forms q(·, ·), l(·) the method reads: find uh ∈ Vh such that

(u̇h, v) + q(uh, v) = l(v), ∀v ∈ Vh, ∀t ∈ I,

(uh(tn−1), v) = (un−1, v), ∀v ∈ Vh,

where un = u(tn), and un−1 is assumed to be known. Now we introduce the variational multiscale
method for this problem: Find uh = uc + uf , where uc ∈ Vc, uf ∈ Vf such that

(u̇c + u̇f , vc + vf ) + q(uc + uf , vc + vf ) = l(vc + vf ), ∀vc ∈ Vc, ∀vf ∈ Vf , ∀t ∈ I,

(uc(tn−1) + uf (tn−1), vc + vf ) = (un−1, vc + vf ), ∀vc ∈ Vc, ∀vf ∈ Vf .

We split this equation into two parts and use an L2-orthogonal split of the coarse and fine scale
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which cancel the terms (u̇c, vf ), and (u̇f , vc)

(u̇c, vc) + q(uc + uf , vc) = l(vc), ∀vc ∈ Vc, ∀t ∈ I,

(uc(tn−1), vc) = (un−1, vc), ∀vc ∈ Vc,

(u̇f , vf ) + q(uf , vf ) = l(vf )− q(uc, vf ), ∀vf ∈ Vf , ∀t ∈ I,

(uf (tn−1), vf ) = (un−1, vf ), ∀vf ∈ Vf .

We use the partition of unities {ϕi}i∈N and {χi}i∈N , where {ϕi}i∈N are the basis functions for
Vc, and where χi =

1

d+1
on supp(ϕi), and split the fine scale equation into three parts

(u̇f,l,i, vf ) + q(uf,l,i, vf ) = l(χivf ), ∀vf ∈ Vf , ∀t ∈ I,

(uf,l,i(tn−1), vf ) = 0, ∀vf ∈ Vf ,

(u̇f,0,i, vf ) + q(uf , vf ) = 0, ∀vf ∈ Vf , ∀t ∈ I,

(uf,0,i(tn−1), vf ) = (χiun−1, vf ), ∀vf ∈ Vf ,

( ˙T ϕi, vf ) + q(T ϕi, vf ) = −q(ϕi, vf ), ∀vf ∈ Vf , ∀t ∈ I,

(T ϕi(tn−1), vf ) = 0 ∀vf ∈ Vf .

It is important to note that these fine scale problems are decoupled from each other and are all
solved on patches ωi localized around supp(ϕi), which are considerably smaller than the entire
domain Ω. If uc =

∑
i∈N αiϕi, then uf =

∑
i∈N

(
uf,l,i+uf,0,i+αiT ϕi

)
and we get the following

for the coarse scale equation

(u̇c, vc) + q(uc + T uc, vc) = l(vc)− q(uf,l + uf,0, vc), ∀vc ∈ Vc, ∀t ∈ I,

(uc(tn−1), vc) = (un−1, vc), ∀vc ∈ Vc,

where T uc =
∑

i∈N αiT ϕi, uf,l =
∑

i∈N uf,l,i, and uf,0 =
∑

i∈N uf,0,i.
We focus on how to construct the patches ωi in order to efficiently and accurately compute

the local fine scale solutions. Two types of patches are considered, symmetric patches that
increases in size symmetrically around supp(ϕi), and directed patches that increase in size along
the advection field σ, see Figure 1. Convergence results that clearly shows the efficiency of using
directed patches are found in Figure 2-3.

Figure 1. Symmetric (dashed) and directed (solid) type patches as they increase in size. In this illustration
we have used σ = [0, 1]. Note that the directed patches are subsets of the symmetric patches.
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Figure 2. Convergence in H1-norm of Tϕi for the two different kind of patches.

Figure 3. Convergence in H1-norm of the global solution uc + uf for the two different kind of patches.
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Summary. The subject of the present numerical study is the 1D wave propagation in the microstruc-
tured solids making use of the Mindlin–Engelbrecht–Pastronemodel. The main focus is on the emergence
of asymmetry between waves propagating in the opposite directions.
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Introduction

In the present work a model derived by Jüri Engelbrecht and Franco Pastrone [1, 4] is ap-
plied to describe wave propagation in nonlinear dispersive media with microstructure. In this
model the microelement is taken as a deformable cell with an additional assumption that the
deformation gradient is small. The later allows one to express microdeformation in terms of
macrodisplacement. Balance laws are formulated separately for the macro- and microscale.

The main goals of the present study are: (i) to solve model equations numerically under
localised initial conditions and periodic boundary conditions, (ii) to describe and analyse the
emergence of asymmetry between waveprofiles propagating in the opposite directions in the
nonlinear cases.

Mindlin–Engelbrecht–Pastrone model

In order to clarify the principal essence and the role of the parameters of the model, we repeat
here the basic steps of modeling (see [1, 4] and references therein for details). In the 1D case the
Lagrangian L is expressed as: L = K −W, where the kinetic energy is K = 1

2
ρu2t +

1

2
Iϕ2

t and
the free (potential) energy can be expressed as W = W (ux, ϕ, ϕx). Here I is the microinertia,
ϕ – the microdeformation, u – the macrodisplacement, ρ – the macroscale density, and partial
derivatives are denoted by subscripts. Equations of motion are derived by making use of Euler–
Lagrange equations and the free energy as follows:

W =
A

2
u2x +

B

2
ϕ2 +

C

2
ϕ2
x +Dϕux +

N

6
u3x +

M

6
ϕ3
x. (1)

Here A,B,C,D are material parameters responsible for the linear part of the model and N,M

for the nonlinearity. For further analysis dimensionless variables X = x
Lo

, T =
√

At
√
ρLo

, U = u
Uo

,

and parameters δ = l2o
L2
o
, ε = Uo

Lo
are introduced [3, 4]. Here Uo and Lo are the amplitude and

the wavelength of the initial excitation, and lo is the characteristic scale of the microstructure.
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Making use of change of variables one arrives at dimensionless equations of motion

UTT =
DLo

AUo

ϕX +
NUo

ALo

UXUXX + UXX ,

ϕTT =
Cρ

AI
ϕXX −

BρL2
o

AI
ϕ−

DρUoLo

AI
UX +

Mρ

AILo

ϕXϕXX .

(2)

Equations (2) are referred to as the full system of equations (the FSE for short) below. Making
use of the slaving principle (see [1] for details) allows one to derive a single hierarchical equation
in terms of macrodisplacement U from the FSE:

UTT − bUXX −
μ

2

(
U2
X

)
X

= δ

(
βUTT − γUXX +

λ
√
δ

2
U2
XX

)
XX

. (3)

Constants in equation (3) in terms of material and geometrical parameters are b = 1− D2

AB
, μ =

NUo
ALo

, β = ID2

ρl2oB
2 , γ = CD2

AB2l2o
, λ = D3MUo

AB3l3oLo
. Equation (3) can be considered as an approximation

of the FSE (2) and are referred to as the hierarchical equation (HE) below.

Numerical scheme and material parameters

In the present paper the material parameters are combined into two parameters

γ2A = 1− b =
D2

AB
, γ21 =

γ

β
=

ρC

AI
. (4)

One can interpret γ1 as the dimensionless speed of short waves and
√
1− γ2A as the dimension-

less speed of long waves. Parameters γ2A and γ21 combine the linear material parameters in (1)
describing macro- and microstructure and interaction between those [1, 5]. Parameters describ-
ing nonlinearity in macro– and microscale (μ and λ in (3), respectively) are not combined in
here.

The used parameter values are

γ2A = 0.02 . . . 0.98, γ21 = 0.02 . . . 0.98, A = 117 · 109, D = 5 · 109,

N = 1 · 1011, M = 5 · 1010, ρ = 8950, I = 4475.
(5)

Free energy parameter B is used to control the value of γ2A and parameter C to control the value
of γ21 from 0.02 up to 0.98. Geometrical parameters are Lo = 25, lo = 1.

In the present paper the pseudospectral method (PSM) based on the discrete Fourier trans-
form (DFT) [2, 6] is applied for the numerical solving of eqs. (2) and (3). The regular PSM
algorithm is derived for ut = Φ(u, ux, u2x, . . . , umx) type equations. In our case, however, we
have also a mixed partial derivative term δβUTTXX in the HE (3) and thus the standard PSM
has to be modified [6, 7]. Therefore we rewrite the HE (3) so that all partial derivatives with
respect to time are in the left-hand side of the HE and introduce a new variable Φ = U−δβUXX .

After that, making use of properties of the DFT, one can express the variable U and its spatial
derivatives in terms of the new variable Φ:

U = F−1

[
F(Φ)

1 + δβk2

]
,

∂mU

∂Xm
= F−1

[
(ik)mF(Φ)

1 + δβk2

]
, (6)

where F denotes the Fourier transform and F−1 the inverse Fourier transform. Finally, equation
(3) can be rewritten in terms of the variable Φ

ΦTT = bUXX +
μ

2

(
U2
X

)
X
− δ

(
γUXX −

λ
√
δ

2
U2
XX

)
XX

. (7)
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In equation (7) all partial derivatives of U with respect to X are calculated in terms of Φ by
using expression (6) and therefore one can apply the PSM for numerical integration of equation
(7). The FSE (2) is reduced to the system of first-order differential equations which are solved
by the standard PSM without any further modifications.

The HE (3) and FSE (2) are solved under localized initial conditions and periodic boundary
conditions U(X, 0) = Uosech

2Bo (X − 64π) , U(X,T ) = U(X + 128mπ, T ), m = 1, 2, . . . , i.e.,
the total length of the spatial period is 128π. For the amplitude and the width of the initial
pulse we use the values Uo = 1 and Bo = π/2. Initial phase speed is taken to be zero. For
the FSE (2) two more initial conditions are needed for the microdeformation. We assume that
at T = 0 the microdeformation and the corresponding velocity are zero, i.e., ϕ(X, 0) = 0 and
ϕT (X, 0) = 0. The integration interval is from zero to Tf = 180. In all considered cases two
solitary waves that propagate in opposite directions emerge from the initial pulse, however, the
spatial period is long enough and the time interval short enough to avoid interactions between
emerged solitary waves regardless of periodic boundary conditions.

Results, discussion and conclusions

The dispersion type for the HE can be determined by the sign of quantity Γ = 1− γ2A − γ21 , (see
[1] for details). If Γ is positive, we have the normal dispersion case, if negative, we have the
anomalous dispersion case and if it is equal to zero, we have the dispersionless case. Only the
results corresponding to the dispersionless case are presented here and therefore γ21 = 1 − γ2A.
It should be noted that the FSE has one additional dispersion curve – so called optical (higher
frequency) branch.

Under used initial and boundary conditions the initial pulse at X = 64π splits into two waves
propagating in the opposite directions. Previous studies have shown that in the nonlinear cases
these waves evolve differently (see [7] and references therein).

In Fig. 1 waveprofiles for the HE (left panel) and for the FSE (right panel) are plotted at
Tf = 180 for γ2A = 0.5 and γ21 = 0.5. The right pulses are propagating to the right and the left
pulses to the left. We introduce a new quantity AΣ characterising the difference between the
waves propagating in opposite directions (normalised against the number of grid points)

AΣ = Al
Σ −Ar

Σ, Al
Σ =

n/2∑
1

2|Ui|

n
, Ar

Σ =

n∑
n/2+1

2|Ui|

n
, (8)

where upper index r denotes the wave propagating to the right, l – the wave propagating to the
left, respectively and n – the number of grid points. The quantity Al

Σ
is related to the area of

the left pulse (0 ≤ X < 64π) and Ar
Σ
to the area of the right pulse (64π ≤ X < 128π).

In the linear cases Al
Σ
= Ar

Σ
for the HE as well as for the FSE and the quantity AΣ = 0.

In the nonlinear cases, however, Al
Σ
�= Ar

Σ
. In Fig. 2 quantity AΣ is plotted against parameter

γ2A at Tf = 180. In general AΣ increases with increasing γ2A. The higher the γ2A the faster
the AΣ increases. Compared to the initial value at γ2A = 0.02, the quantity AΣ is increased by
39%, 115% and 195% for the HE and by 22%, 64% and 115% for the FSE at γ2A = 0.5, 0.8, 0.9,
respectively. At low values of γ2A the difference between the HE and FSE is negligible (less than
5% at γ2A = 0.3 and below). However, the difference between the HE and FSE increases with
increasing γ2A. Values of AΣ for the HE exceed these for the FSE by 13%, 32% and 37% at
γ2A = 0.5, 0.8, 0.9, respectively.

It is interesting to note that the additional oscillations emerging in the FSE as a result of
the presence of the optical dispersion branch (see Fig. 1) are more prominent for the higher
the values of parameter γ2A. These oscillations cause the quantities Al

Σ
and Ar

Σ
to increase with

increasing γ2A. However, the quantity AΣ (that measure the strength of asymmetry) is greater
for the HE (where the oscillations do not exist).
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Figure 1. Waveprofiles at T = 180 and γ2

A
= 0.5 in the dispersionless case.
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Figure 2. Quantity AΣ against γ2

A
at T = 180 in the dispersionless case.

To summarise the results we can conclude: (i) the model equations were solved numerically
under localised initial conditions and periodic boundary conditions, (ii) in the linear cases the
waves propagating to the opposite directions are symmetric with respect to X = 64π but in
nonlinear cases asymmetric, (iii) under used material parameters the quantity Al

Σ
> Ar

Σ
in the

nonlinear cases, (iv) AΣ increases faster for the HE than for the FSE with increasing γ2A, (v)
similar asymmetry exists in dispersive cases as well.
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SSummary. In this paper the volume average relations related to the multilevel modelling 
process are analyzed and the concept of average consistency is investigated both analytically 
and numerically.  

Key words: volume average relations, computational homogenization, continuum mechanics 

Introduction 

Volume average relations have become important in applied continuum mechanics due to the 
growing interest in a numerical procedure known as computational homogenization. This 
averaging technique, using for instance the unit cell or representative volume element as 
reference configuration, is useful when considering macroscopic engineering components for 
which micro-structural features and heterogeneities are of importance. The technique makes it 
possible to obtain a transition of the mechanical properties from the local, microscopic, to the 
global, macroscopic, length scale. Various versions of these procedures, presented in a number 
of papers by Ref. [1-4], among others, have been used by several authors dealing with the 
modelling of materials for which the microstructure plays an important role for the global 
behaviour. The basic ideas underlying these procedures rest on the general assumption that the 
principles of continuum mechanics may be used on the global as well as the local scale, and that 
these scales are thermo-mechanically interconnected by solving a boundary value problem on 
the local scale equipped with some suitable constraints, kinematical or others, originating from 
the global scale. The solution to this boundary value problem is volume averaged in order to 
obtain the thermo-mechanical response on the global scale.  

The RVE as a ”constitutive equation” 

As a concrete example we may consider a multilevel model of a cantilever beam with fixed 
support at one end and loaded by a force W  at the other end according to figure 1. below. This 
is called our global structure. Conventionally, the problem of finding the equilibrium 
transplacement of the beam is obtained by introducing constitutive equations for the beam 
material. If the beam is inhomogeneous, involving a mixture of different materials, then a finite 
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element formulation of the equilibrium equations may lead to problems with the accuracy of the 
subsequent computation. An alternative analysis of this problem may be done by using a 
multilevel calculation involving two models; one for the global structure, such as the cantilever 
beam, and one for the local structure in the shape of a RVE. This RVE, denoted by ( )X�

�
R , 

represents a ‘close-up picture’ of the beam material and gives a detailed representation of it in 
terms of constitutive equations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                             Figure 1. Multi-level model. 

 
Here ( )X�P P  denotes  the  first  Piola-Kirchhoff  stress  tensor,  ( )X�b b  is body force field 
and ( )X� �� ��  is the mass density in the reference placement of the RVE. The volume average 
of the deformation gradient is defined by 

                               
( )

( ) ( )
( ( ))

X

1
X dv X

v X
�

�
�

� �
�

�F F
RR

                                                      (1) 

where ( ( ))v X�

�
R  is the volume of the RVE. From the solution to the constrained boundary 

value problem we obtain the stress tensor P  and its volume average may be calculated as 
 

                     
( )

( ) ( ) ( )
( ( ))

X

1
X X dv X

v X
�

� �
�

� � �
�

�
�P P P

RR
                                               (2) 

The volume average 
�

P  is brought back to the global structure. In this way the RVE serves as 
a ‘constitutive equation’ for the beam material and one may formally write 

( ) ( , ) ( )X X X
�

� �
�� � � � �

P F PG , where
�
P denotes the global stress and 

�
G  denotes the ‘constitutive 

response function’ for the beam material. The equilibrium conditions for the beam are then 
checked.  If  they  are  not  fulfilled  a  change  of  the  equilibrium  transplacement  of  the  beam  is  
made and the process is repeated. By this iterative procedure called computational 
homogenization a unique equilibrium transplacement of the beam may eventually be obtained.  
     The constrained boundary value problem is obviously over-determined in the sense that, in 
general, if the displacement vector u  or the traction vector �t , are prescribed on the boundary 
together with F

�
 then the problem will have no solution. Consequently we cannot choose u  and 

�t  arbitrarily and we have to relax our boundary conditions. There are several ways of doing 
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�
�  
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� �
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B  

( , )X �� �
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this, including so-called ‘periodic boundary condition’. For different formulations the global 
stress will be different. The question then arises which formulation should be used? One 
guideline for this choice could be the requirement of average consistency. It seems reasonable 
to require that the multilevel modelling procedure should, as far as possible, result in continuum 
mechanical relations which maintain as much as possible of their general appearance and 
structure during an averaging procedure.  
    The continuum mechanical relations 
 �F RU ,  T�C F F ,  T�B FF ,  detJ � F  

                 
TJ ��P T F ,  J�K T ,  1 TJ � ��S F TF ,  T �T T ,  T T� PF FP ,  T �S S          (3) 

where T  is the Cauchy stress, K  is the Kirchhoff stress and S  is the second Piola-Kirchhoff 
stress tensor, are said to be volume average consistent if 

             � � �
�RU R U ,  T

� � �
�C F F ,  T

� �
�B F F ,  detJ

� �
� F       (4a)  

                       
TJ

� � �

��P T F ,  J
� �
�K T ,  1 TJ

� � � �

� �
�S F T F         (4b) 

                               T �T T ,  T T

� � � �
�P F F P ,  T

� �
�S S                         (4c) 

where the volume averages of a quantity �  are defined according to 
 

                             ( ) ( )
( )
1 x dv x

v
� �� �

RR
,  ( ) ( )

( )
1

X dv X
v

�

�
�

� �� �
RR

 (5) 

�  is  called  the  spatial volume average and 
�

�  the  referential  volume  average  of  the  
quantity � . Inconsistencies may appear in connection with, for instance, the polar 
decomposition of the deformation gradient, i.e. 

� � � �
� �F RU R U . The inconsistence 

may be quantified by inconsistency ratio I  defined by 

 ( )I � � �

�

�
�

RU
RU R U

RU
 (6) 

     The volume average relations in (4) are analyzed and the concept of average consistency is 
investigated for three type of boundary conditions - the periodical, affine and anti-periodical 
boundary condition. It can be shown analytically, see Ref. [5], that  average stress  relations in 
(4b) and (4c) are fulfilled, assuming the periodical boundary condition, whereas the average 
relations in (4a) are in general not average consistent. Therefore these relations were 
investigated also numerically. 
 
Numerical investigation 
 
The numerical example consists of a square shaped RVE and as a constitutive law a hyper 
elastic material of Neohookean type is assumed. For large strain hyper elastic material the 
Cauchy stress can be derived from the strain energy function given by the deformation gradient. 

The logarithmic strain is introduced as a strain measure as  ln�� V , where � �1/2T�V FF  is the 
left stretch tensor. The inhomogeneities are introduced and periodic boundary conditions are 
applied. The displacement is prescribed on the two vertical boundaries of the RVE, where as the 
horizontal boundaries are traction free. The periodic boundary conditions are applied as 
constrains, which reduces the number of equation. In figure.1 the deformed shape of the RVE is 
presented. Result for different inconsistency ratio for both homogeneous and in homogeneous 
RVE, are seen in table 1. 
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                   Figure 2. Inhomogeneous RVE subjected to periodic boundary condition. 
 

Table 1. Inconsistency ratios 
 

Average relations Homogeneous material Inhomogeneous material 

Kirshhoff stress, K              3.31 �  10-9 6.03 �  10-5  

Cauchy stress, T  1.63 �  10-9 3.28 �  10-5 

1st Piola-Kirshhoff stress, P  3.32 �  10-9 6.03 �  10-5 

2nd Piola-Kirshhoff stress, S  3.14 �  10-9 7.63 �  10-5 

Right Cauchy-Green tensor, C  2.87 �  10-10 2.66 �  10-5 

Left Cauchy-Green tensor, B  3.55 �  10-10 2.30 �  10-5 

decomposition F=VR 5.71 �  10-11 2.22 �  10-6 

decomposition F=RU 6.11 �  10-11 2.72 �  10-6 
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(†) filip.nilenius@chalmers.se

Summary. An FE2-method is employed for modeling diffusion of chloride ions in concrete. Concrete is
considered on themesoscale, within a representative volume element (RVE), as a heterogeneous composite
material consisting of the cement paste, ballast and the interfacial transition zone (ITZ). In addition, the
proposed model accounts for the fact that the diffusion of chloride ions is cross-coupled to the diffusion
of moisture.

Key words: chloride ions, concrete, diffusion, FE2, moisture.

Introduction

Chloride ions are harmful for concrete structures as the ions can initiate corrosion of embedded
reinforcement bars. Modeling and simulation of chloride diffusion is therefore of interest in order
to be able to predict time spans at which corrosion may be initiated.

In this contribution, a FE2-method for coupled chloride-moisture diffusion is proposed where
the strongly heterogeneous mesoscale structure of concrete is accounted for. The model is based
on the concept of a representative volume element (RVE) where the mesoscale constituents of
concrete in terms of cement paste, ballast and the interfacial transition zone (ITZ) are contained.
Here, the ITZ is interface between the cement paste and the ballast, having much higher porosity
than the bulk cement paste. In the model it is assumed that the cement paste is permeable, the
ballast is impermeable and the ITZ is highly permeable.

An algorithm for generating the mesoscale structure of concrete has been developed and ex-
amples of generated structures are shown in Figure 1. Main control parameters of the algorithm
are ballast content and sieve curve. Note though, that since the modelled geometry is in 2D, it
will not exactly correspond to concrete with a given (3D) sieve curve.
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(a) nb ≈ 60% (b) nb ≈ 50% (c) nb ≈ 40%

Figure 1: Examples of different mesoscale structures generated by the algorithm. nb denotes
the ballast fraction.

Computationally, the approach is to introduce the RVE in the Gauss-points on themacroscale
domain in a so-called FE2-algorithm, with its principal structure depicted in Figure 2. In this
manner, the idea is to let the RVE serve as a constitutive model for the macroscale.

Figure 2: The RVE (right) is introduced in the Gauss-points on themacroscale (left). Macroscale
quantities of H̄ and C̄ are used to set up Dirichlet boundary conditions (prolongation), a bound-
ary value problem on the RVE is solved, and the solution is homogenized and sent back to the
macroscale.

Problem formulation

The FE2-framework used in this work was developed in Larsson et al. [1] for transient heat flow
and is here adopted for coupled diffusion phenomena. Mathematically, the problem is formulated
using the mass conservation laws stating that

∂tΦH +∇ · JH = 0 in Ω× [0, T ] (1)

∂tΦC +∇ · JC = 0 in Ω× [0, T ] (2)

where Ω ⊂ R
3 is an arbitrary spatial domain of unit thickness bounded by Γ, and where ∇

is the spatial gradient with respect to coordinates x in Ω. ΦH(x, t) and ΦC(x, t) denote the
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moisture and chloride ion content, respectively, and JH(x, t) and JC(x, t) denote the moisture-
and chloride ion flux, respectively. The explicit choice of constitutive relations for the cement
paste, used on the meso-scale, for the flux vectors is taken from Ababneh et al. [2]:

JH(H,C;∇H,∇C) = −DH(H)∇H − εCDC(H,C)∇C (3)

JC(H,C;∇H,∇C) = −εHDH(H)∇H −DC(H,C)∇C (4)

where H is the relative humidity in the cement pores and C is the chloride concentration.
Furthermore, DH and DC are diffusive coefficients and εH and εC are coupling parameters.

Numerical example

In Figure 3, a numerical example of a two scale (FE2) simulation is presented.

A B C D

Figure 3: Snapshot of transient solution to H̄, for a given time step. The smooth solution on
the macroscale (left) is obtained by homogenization of the non-smooth RVE responses (right).

In Figures 4 and 5, the time evolution of H̄ and C̄ are presented from FE2-simulations as
shown in Figure 3.
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Figure 4: Time evolution of H̄ for varying values of nb in the RVE, in different points in the
macroscale domain. The red line has the ITZ included in the RVE. Point A,B and D are defined
in Figure 3.
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Figure 5: Time evolution of C̄ for varying values of nb in the RVE, in different points in the
macroscale domain. Point A,C and D are defined in Figure 3.

Conclusions

By employing a FE2-method for modeling transport phenomena in concrete, the strongly het-
erogeneous structure of the material can be accounted for. This method enables modeling of
concrete as a heterogeneous material by actually consider it as a composition of three materials,
namely the cement paste, ballast and ITZ.
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Summary. Homogenization of a Stokes flow in an open pore system is studied. The homogenization
results in a Darcy flow on the macroscale. On the heterogeneous subscale, a (possibly nonlinear) Stokes
flow problem is formulated on a Representative Volume Element (RVE). As a coupling between the
macroscale and the subscale, the macroscale pressure gradient is used. The prolongation of the Darcy
flow fulfills the Variationally Consistent Macrohomogeneity Condition.

Key words: porous media, FE2, computational homogenization

Introduction

Porous materials are present in many natural as well as engineered structures e.g sandstone
which contains oil and different kinds of filters. On the subscale, the material has a strongly
heterogeneous composition consisting of a solid matrix with fluid filled pores, while on the
macroscale the material is often modeled as homogeneous using an averaged constitutive relation.
Due to the complexity of the substructure in this kind of materials, it is difficult to make an
accurate model on the macroscopic level, thus exploring the possibilities of a multiscale approach
is a natural step, see e.g [1].

On the macroscale a Darcy flow is present which is solved using the Finite Element Method.
However, instead of using a conventional constitutive relation associating the seepage velocity
to the pressure gradient, another Finite Element problem is solved in each Gausspoint in order
to produce the velocity given the pressure gradient. The problem solved in each Gausspoint is
referred to as the subscale problem. This problem consists of a Stokes flow that is solved for
on a Representative Volume Element (RVE)[2] which is geometrically a representation of the
substructure of the porous medium. The solution to the subscale problem is homogenized and the
result is returned to the macroproblem. The procedure presented in this work is a generalization
of classic homogenization, following along the lines in [3].

Fully resolved Stokes flow

Consider a fully resolved domain Ω consisting of an open pore system ΩF and solid obstacles
which are assumed to be rigid. The boundary ΓF is the part of Γ := ∂Ω which intersects the
boundary of ΩF, i.e. the part of Γ where fluid can enter or exit the domain. Furthermore, the
boundary Γint is introduced as the part of ∂ΩF which is contained inside Ω, i.e. the boundaries
of the obstacles in the porous domain.

111



The strong form of the Stokes flow on the fully resolved domain is then given as

−∇ · σ (l, p) = 0 in ΩF (1a)

∇ · v = 0 in ΩF (1b)

t
def
= σ · n = − p̂n on ΓF

P (1c)

v = v̂nn on ΓF
V (1d)

v = 0 on ΓF
int (1e)

where σ is the Caucy stress tensor and l is the velocity gradient tensor. Furthermore, p̂ is the
prescribed pressure on ΓF

P
and v̂n is the prescribed velocity normal to the boundary ΓF

V
. In

standard fashion, the total stress is split up into a (generally nonlinear) deviatoric part σv and
a hydrostatic pressure part p as

σ(l) = σv(l)− pI (2)

We proceed by splitting the pressure p into a smooth macroscale part pM and a fluctuating, non-
smooth subscale part pS. The weak form of the problem is given as that of finding (v, pM, pS) ∈
V × PM

F
× PS

F
such that∫

ΩF

σv(l) : [δv ⊗∇]−∇pM · v + pS(∇ · v)dV =0 (3a)∫
ΩF

δpS [∇ · v]− v ·∇δpMdV = −
∫
ΓF

V

v̂nδp
MdS (3b)

holds for all δv ∈ V0 and all (δpS, δpM) ∈ PS,0
F

× PM,0
F

. Here, we introduced the linear trail

spaces V0 × PS,0
F

× PM,0
F

.

Homogenization and separation of scales

To proceed, we consider the case that the we want to solve the Stokes flow problem in the
previous section on two connected scales; the macroscale Ω and the subscale Ω�. The subscale
domain Ω� is referred to as a Representative Volume Element (RVE) and represent the subscale
geometry and fluid properties. Furthermore, the macroscale pressure pM is assumed to vary
linearly inside each RVE, thus first order homogenization is adopted. On the macroscale, the
smooth pressure p̄ is introduced and the macroscale and subscale are connected by the respective
pressure gradients, i.e. ∇p̄ = ∇pM where p̄ exists on the entire Ω and pM exists on the RVE
only.

For the subsequent homogenization, the intrinsic volume averaging for an arbitrary function
f is introduced as

〈f〉� =
1

| ΩF
� |

∫
ΩF

�

f dV (4)

Using Equation 4, the weak form in Equation 3 can be restated as that of finding (v, pM, pS) ∈
V × PM

F
× PS

F
such that∫
ΩF

φ
〈
σv(l) : [δv ⊗∇] + pS(∇ · v)

〉
� dV =

∫
ΩF

φ
〈∇pM · v

〉
� dV (5a)∫

ΩF

φ
〈
δpS [∇ · v]

〉
� dV = 0 (5b)

−
∫
Ω

φ
〈
v ·∇δpM

〉
� dV =−

∫
ΓV

φ
〈〈
v̂nδp

M
〉〉

� dV (5c)
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for all δv ∈ V0 and all (δpS, δpM) ∈ PS,0
F

× PM,0
F

where φ =
|ΩF

�|
|Ω�| is the porosity and w̄ is the

seepage velocity defined as

w̄ = φ 〈v〉�

In Equation 5c, we introduced the surface average 〈〈•〉〉 required for the homogenization of
velocity boundary conditions.

The macroscale problem

Using the definition of the seepage velocity and Equation 5c together with the condition that
∇p̄ = ∇pM, the macroscale equation is given as

−
∫
ΩF

w̄(∇p̄) ·∇δp̄ dV = −
∫
ΓF

D

ŵnδp
MdS (6)

which is identified as the weak form of the continuity equation. Thus, the macroscale problem
is a Darcy flow where w̄(∇p̄) is evaluated on the subscale.

The subscale problem

From Equations 5a and 5b, the subscale problem is given as that of finding (v, pS) ∈ V� × PS
�

such that

1

| Ω� |

∫
ΩF

�

σv(l) : [δv ⊗∇]− pS [∇ · δv] dV =
1

| Ω� |

(
−

∫
ΩF

�

δv ·∇p̄ dV +

∫
ΓF

tS · δv dS

)
(7a)

1

| Ω� |

∫
ΩF

�

δpS [∇ · v] dV = 0 (7b)

for all δv ∈ V0
� and all δpS ∈ PS,0

� .
As a special case, we now consider periodic boundary conditions, whereby we assume v ∈ V�

and pS ∈ PS
� to be periodic and the subscale traction tS to be anti-periodic. Note that the

boundary integral in Equation 7a is a result from the decomposition of Ω into RVEs Ω�. It can
be shown that for periodic boundary conditions, this boundary integral vanish, thus assuring
equilibrium.

Numerical results

The example below illustrates how a RVE is used as a constitutive model in a macroscopic
problem. On the left hand side of the macroscale domain (the L shaped domain), a pressure
of 100 Pa is applied while on the north most part of the domain a pressure of 0Pa is used,
resulting in a flow through the domain. Along the walls, a Neumann condition is used to prevent
seepage in the normal direction. On the subscale, the macroscopic pressure gradient is used as
a body-load along with periodic boundary conditions.
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Figur 1. The domain on the left is the macroscale domain exposed to a pressure gradient. In each Gauss
point, the pressure gradient is imposed on a RVE in order to compute the seepage velocity.

Conclusions and outlook

It is shown how a Stokes flow in an open pore system is turned into a two-scale problem consisting
of a Darcy flow on the macroscale and a Stokes flow on the subscale. The method described
herein is capable of performing coupled subscale-macroscale computations involving non-linear
fluids.

Future work includes an extension to a deformable solid matrix which calls for a transi-
tion from 2D to 3D. Moreover, since concurrent multiscale is computationally expensive, an
incorporation of adaptive techniques is of interest.
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Summary. This article deals with the problem of minimizing the structure-borne noise level in 
a room transmitted from unbalanced rotating machinery. The machine is mounted via resilient 
mounts on the roof of the room. The resilient mounts will be optimized for the noise reduction. 
A generalized formulation using the mobility and impedance is developed for analysis and 
optimization of the system consisting of the machine, resilient mounts, the floor plate and the 
room cavity. Numerical examples are provided for validation of the method.  

Key words: rotating machine, structure-borne noise, resilient mounts, light-weight building 

Introduction 

Rotating machinery is often installed in buildings for various applications such as in central 
heating and ventilation systems. The machinery is normally mounted on a floor of the storey via 
some resilient mounts. Due to the existence of dynamic forces of e.g. mechanical, fluid dynamic 
or electro-magnetic origin, the rotating machinery may be considered a source that within a 
given range of excitation frequencies excites forced vibration of the foundation, and thereby the 
floors and walls, etc., of the building. The transmission of such vibrations through the building 
may result in undesirable sound emission. The minimization of vibration and noise transmission 
is studied in this paper. 

Analysis formulation 

The mobility and impedance approach is adopted to analyze the installation system of the 
machinery. The transmitted force dF  from the machine to the floor plate can be found in our 
previous work Ref. [1]. Furthermore, using the modal approach, and assuming weak coupling, 
the equation for the acoustic pressure in the room is given by 

 d
a sp � Z CY g  (1) 
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where aZ  is the uncoupled acoustic modal impedance matrix, C  the structural-acoustic mode 

shape coupling matrix, sY  the uncoupled structural modal mobility matrix, and dg  is the 
generalized modal force given by 

 
f

d d

S
dS� �g �F  (2) 

In Eq. (2), �  denotes  the uncoupled vibration mode shape functions of the floor plate, and 

fS  is the surface area of the floor plate. Detailed derivation of modal impedance and mobility 
matrices is available in Refs. [1] and [2]. 

 

Figure 1. A schematic illustration of the machine installation via resilient mounts on the 
building floor connected with an acoustic cavity. 

Modeling of resilient mounts 

A convenient way to isolate vibration of machinery is to use polymer or rubber-like material as 
resilient mounts, which are called mass-less compression mounts. A novel periodic mount in 
Ref. [3] termed as periodic shear mount is applied in the computation as a comparison, where 
the rubber-like material is in a shear deformation mode rather than compression mode. The 
acoustic pressure using different resilient mounts will be compared to determine the optimum 
selection for the installation of machinery. 

Numerical examples 

As indicated in Figure 1, the border of the enclosure consists of five acoustically rigid walls and 
a simply supported flexible plate on the remaining side, where an unbalanced rotating machine 
is installed. The material and geometric parameters of the structure and acoustic medium are 
given in Tables 1 and 2. 

Figure 2 shows the acoustic pressure at the central point inside the cavity for softer and 
stiffer compression resilient mounts, and for the rigid connection as a comparison. The 
comparison of acoustic pressure at the central point is given in Figure 3 for three cases using 
rigid connection, compression mount and periodic shear mount. 
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Table 1. Material parameters
of the building floor plate.

Young’s modulus E 96 10 Pa�
Poisson’s ratio v 0.1

length xl 6 m 
width yl 4 m 

thickness h 0.05m 
Mass density � 455 kg/m3

Damping ratio � 0.01 

Table 2. Material parameters of the acoustic 
medium (air) in the room.

Mass density a� 1.21 kg/m3

Phase speed 343 m/s 
length xl 6 m 
width yl 4 m 
height zl 3 m 

Damping ratio a� 0.01 
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Figure 2. Acoustic pressure at the central point inside the cavity: (a) softer compression resilient 

mounts, (b) stiffer compression resilient mounts.
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Figure 3. Acoustic pressure at the central point inside the cavity using rigid connection, mass-
less compression mounts and periodic shear mounts. 
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Conclusions 

In comparison with designs without resilient mounts, it is found that a relatively soft resilient 
mount generally reduces the transmission of vibration and noise from the unbalanced 
machinery. The periodic shear mount can provide more considerable reduction in the higher 
frequency range.  
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Summary. This paper proposed a new approach of the design optimization of lightweight robotic
arms, where robot kinematics, dynamics, drive-train design and strength analysis by means of finite
element analysis (FEA) are considered. Constraints are formulated on the basis of kinematic performance,
dynamic requirements and structural strength constraints, with the objective tominimize the weight. The
proposed approach is demonstrated with a design example of a five degree-of-freedom lightweight arm
for assistive applications.

Key words: integrated robot design, lightweight robots, Complex method, robot optimization with FEA.

Introduction

Light and strong robotic arms are desirable for assistive applications due to concerns of safety
and energy efficiency. Optimization is an effective approach to achieve a lightweight design, while
different constraints can be considered. The constraints typically considered in reported works
include the kinematics and dynamics performance, the drive train requirements, etc. [1–3]. The
structural constraints such as stress and deformation, on the other hand, are rarely considered.

In this work, an optimization method is developed for the design of lightweight robotic
manipulators by addressing the influence of strength constraints, with an objective to minimize
the weight of the robot. The structural dimensions of a robotic arm are taken as variables in
the design optimization, in addition to the parameters of the drive-trains. Constraints on the
kinematics, drive-train dynamics and structural strength are considered. The paper shows that
the integrated optimization method can contribute to further reducing the arm weight.

A 5-dof robotic arm

The light-weight robotic arm considered in this paper has five degrees of freedom (dof), with two
dof at the shoulder, one at the elbow, and two at the wrist, as shown in Fig. 1(a). A modular
approach is adopted in the design. Each joint is built with CPU series gearboxes of Harmonic
DriveTM and Maxon motors, which are mounted inside the joint housings.

The structural parts of the robotic arm are to be optimized in this method, in addition to the
drive-train optimization. Figure 1(b) shows some parameterized dimensions of the robotic arm.
These dimensions fall into two groups: the assembling dimensions including the link lengths of
the upper arm l1 and the lower arm l2. The assembling dimensions determine the robotic arm’s
kinematic performance, while the structural dimensions affect the arm structural strength.
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Figure 1. (a) CAD Rendering of a 5-dof light-weight anthropomorphic arm, (b) parameterized dimensions

Integrated design optimization

The objective of the design optimization is to minimize the total mass of the light-weight robotic
arm. The task is to find the lightest combination of motors and gearboxes for all five joints and
the optimal link lengths that fulfill all constraints associated with the kinematic, strength and
drive-train constraints. The optimization will minimize the total mass which includes themasses
of motors (mm), gears (mg) and the robotic arm structure (marm). Skipping derivations, the
objective function, f(x), is defined as

min
x

f(x) =

n∑
i=1

{mm(um) +mg(ug)}i +marm(ud), x = [um,ug,ud] (1)

s.t. Smax < Sy, Dmax < Dlim (2)

GCI ≥ Cmin (3)

τrms ≤ Tm, τp ≤ Tmax
m , np ≤ Nmax

m (4)

τrmc ≤ Tg, τg ≤ Tmax
g , ng ≤ Nmax

g (5)

where design variables of x include the index numbers of motors um = [um,1, . . . , um,n] and gear-
boxes ug = [ug,1, . . . , ug,n], relative to databases containing commercially available components,
and an array of dimensional variables ud consisting of index numbers of discretized dimensions.

The constraints specified in eqs. (2)–(5) stand for the structural constraints, kinematics
constraint, requirements for motor and gearbox selections, respectively. In these constraints,
the left-hand sides are calculated values, namely, the maximum stress (Smax) and deformation
(Dmax), kinematic performance GCI, rated torque (τrms/τrmc), peak torque (τp/τg) and peak
velocity (np/ng) for motors/gears, while the right-hand sides are their corresponding limits,
either specified in the product catalogs or by users. Note that GCI is a kinematic performance
of manipulability, evaluated in terms of global conditioning number of the robot Jacobian.

So far, we have formulated the design problem as a discrete optimization problem, which
can be solved by commercial available codes. We select a non-gradient method called Complex
for this purpose. The implementation is outlined in the next section.

Procedure of optimization

The design optimization problem is solved by the Complex method [4], a method suitable for
nonlinear and discrete optimization problems. With this method, a number of points (sets of

120



Table 1. Results of design optimization.

Joint
Initial Case A Case B

Motor Gearbox Motor Gearbox Motor Gearbox

1 RE 40 CPU 17 RE 30 CPU 14 EC 32 CPU 14
2 RE 35 CPU 17 RE 25 CPU 14 RE 25 CPU 14
3 RE 35 CPU 17 RE 30 CPU 14 RE 30 CPU 14
4 RE 35 Gearhead RE 25 Gearhead RE 25 Gearhead
5 RE 35 CPU 17 RE 25 CPU 14 RE 25 CPU 14

Ratio r = 0.5 r = 0.6 r = 0.6
Weight 16.7 [kg] 8.3 [kg] 9.92 [kg]

[l1, ra, rb, wh1] mm [500, 31, 27, 20] [600, 34, 29, 40] —

Case A: Robot optimization with structural constraints
Case B: Robot optimization without structural constraints

design variables) will be evaluated against the objective function. The set of design variables
minimizing the objective function is denoted as the best point xb, while the one maximizing
the objective function is denoted as the worst point xw. The worst point is replaced in each
iteration with a better point until the optimization converges, i.e., the difference between the
worst and best values is less than a user-defined tolerance.

The optimization method is implemented as a design optimization platform containing three
modules, which include the kinematic simulation, the dynamic simulation, the FEA module.
Among them, the kinematics simulation module is used to conduct the kinematics analysis
of the robot system. Kinematics performance such as global conditioning index (GCI), etc.,
is evaluated in this module. The dynamics module runs the dynamic analysis of the robotic
multibody system. The FEA module deals with the static and dynamic structural analysis.
The optimization is implemented in Matlab which oversees all modules.

In this work, a group of four trajectories within the robot workspace was used to conduct
kinematics and dynamics simulations for the robotic arm. With the defined trajectories, the
end-effector moves either horizontally or vertically. The end-effector remains horizontal during
all the movement.

The payload is defined as a point mass of 5 kg. In the structural analysis, the design payload
is multiplied by a safety factor of 2. The structure parts of this robot are made of aluminium, so
the yield strength Sy = 280 MPa. The deflection limit at the end-effector is set to Dlim = 5 mm.

Results of design optimization

Optimized designs of structural dimensions and drive-train for the robotic arm are listed in
Table 1. As shown in the optimization results of Case A, the minimum mass of the robotic arm
is 8.3 kg, a mass reduction to 50% of the initial design being achieved.

The convergence of the objective function are depicted in Fig. 2(a), both the best value
(black dot) and worst value (gray dot) from the Complex algorithm are shown. The solution
to the optimal result is achieved at 6500 iterations with 150 population sizes. The tolerance of
convergence is set to 0.0001.

A practical concern is the time-consuming FEA calculation. To improve the efficiency, FEA
simulations were conducted in batch mode for all the discrete structural dimensions and the
results consisting of maximum stress, deformation and mass are stored in a database file. In
each iteration of the optimization, the program will re-load the FEA results instead of running
FEA simulation. Adopting this approach leads to the computational time reduced from more
than 10 days for one case to 10 minutes only.

The lengths of the upper arm link ls1 and lower arm link ls2 converge following the conver-
gence of the link length ratio r. The optimized structural dimensions of the robotic arm are
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Figure 2. (a) Convergence of the objective function, (b) convergence of structural dimensions, (c) von-
Mises stress with the original (top) and optimized (bottom) designs

shown in Table 1. The convergence plots of the length ratio and widths of the opening slots
are depicted in Fig. 2(b). Note that to reduce calculation, wh1 is made identical to wh2 in this
work. Upon the optimized structural dimensions in Table 1, FEA is conducted separately for the
original and optimized robotic arm designs, with the von-Mises element stress being depicted in
Fig. 2(c).

The optimization results were compared with the results from a method reported in [3]. An
additional case, Case B, in which structural constraints are not considered, is included. The
results are summarized in Table 1. It is seen that a significant mass reduction is achieved with
the optimization under the constraint of strength, which reduces the mass of the upper and
lower arm links by 1.7 kg. The comparison reveals that the new method can contribute to
reduce further the robot mass without degrading the performance of the robot.

Discussion and conclusions

An integrated approach for the design of light-weight robotic arms was proposed in this work.
Selections of structural dimensions, motors and gearboxes were formulated as a discrete opti-
mization problem, which was solved by a non-gradient optimization method. The results show
that the method can achieve an optimal design with minimum mass, while satisfying the con-
straints on kinematics, drive-train and structural strength.

The inclusion of the robot structural strength in the optimization benefits the robot design
in several aspects. Firstly, the mass can be effectively reduced by applying the static strength
constraint, as did in this work. Secondly, this approach can also address the fatigue limit, a
major concern in robot design, by either specifying a minimum stress or conducting fatigue
simulation in FEA module.
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Summary. This paper presents a novel method for large-scale multi-material topology optimization
of fiber reinforced composite structures subject to certain manufacturing constraints. The method con-
cerns simultaneous determination of thickness (i.e. a varying integer number of plies with predefined
thicknesses) and fiber orientation (among a finite set) throughout laminate structures with fixed outer
geometries. The conceptual combinatorial/integer problem is relaxed to a continuous problem and solved
on basis of the so-called Discrete Material Optimization method, explicitly including the manufacturing
constraints as a large number of sparse linear constraints. An example is solved and results agree with
the expected outcome.

Key words: multi-material topology optimization, fiber reinforced composite laminates, optimal design,

manufacturing constraints, discrete material optimization

Introduction

Fiber reinforced composite laminates are applied in a variety of high performance structures
because the stiffness to weight ratio along the fibers surpasses e.g. steel and aluminum alloys.
The basis of this paper is laminated structures where the outer geometry for some reason is
fixed which could be the case for e.g. wind turbine blades. Weight reduction while maintaining
sufficient stiffness of such structures implies that the thickness of the laminate must vary inwards
in an optimal manner. The individual plies/layers in the laminate are typically chosen among
a finite set of materials with finite sets of fiber angles, e.g. Carbon/Glass Fiber Reinforced
Polymer (CFRP/GFRP) with [0◦, +45◦, −45◦, 90◦] fiber orientation. The task for the designer
is simultaneously to determine thickness (i.e. a varying integer number of plies with predefined
thicknesses) and fiber orientation (among a finite set) throughout the entire laminate. In a
finite element discretized domain, the problem is therefore conceptually a combinatorial multi-
material topology optimization problem. This paper presents a novel method that treats this
problem.

The optimized design is typically subject to certain manufacturing constraints (MC): To
accommodate application of prepregs, large regions/patches within the layers of the total ge-
ometry/laminate must be identical (MC1); to prevent failure such as delamination and matrix
cracking problems, changes in thickness cannot be too abrupt (MC2) and the number of iden-
tical contiguous plies should not be too high (MC3). Explicit inclusion of these manufacturing
constraints in the topology optimization problem while preventing intermediate void in the
monolithic laminates yields an optimized starting point for detailed post processing before true
realization may take place. Stress constraints and failure criteria are not considered explicitly in
this work. Avoiding intermediate void and fulfilling MC1-MC3 will, however, implicitly reduce
the risk of failure.
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Recent work on simultaneous material distribution and orientation has been summarized
in [2]. Heuristic and genetic algorithms are frequently applied and well suited for combinato-
rial/integer problems, see e.g. [4] and [5]. Heuristic and genetic algorithms do, however, rely
on extensive amounts of finite element analyses, and despite the ever-increasing parallelizeable
computational power, it is unacceptably computationally expensive to apply such methods for
large-scale optimization problems.

In this paper, the combinatorial/integer thickness optimization problem is relaxed thus al-
lowing application of gradient based state-of-the-art optimizers as e.g. SNOPT [3] that is used
in this work. Based on the so-called Discrete Material Optimization method [6], prevention of
intermediate void and MC1-MC3 are explicitly included in the optimization problem as a large
number of sparse linear constraints. The paper is organized as follows: General formulation of
the optimization problem, an illustrative example with results, concluding remarks, and a list
of references.

Problem formulation

The method to be presented takes basis in multi-phase minimization of compliance, c, through
the density approach, see [1], in which the constitutive properties of all layers in all Equivalent
Single Layer (ESL) shell elements in the discretized domain are functions of the densities.

E ij = E0 +
ρij

1 + p(1− ρij)

nc∑
k=1

x
ijk

1 + q(1− x
ijk

)
(Ek −E0) , ∀(i, j) (1)

In (1), index i concerns a specific ESL shell element, index j concerns a specific layer in an
ESL element, and index k concerns a specific material candidate. E is a constitutive matrix,
ρ ∈ [0, 1] is the topology variable (density), x ∈ [0, 1] is a candidate material variable, p and q are
penalization powers for the variables, and nc is the number of specific candidate materials. E0 is
massless and significantly more compliant than all Ek. The parameterization in (1) utilizes the
material interpolation scheme RAMP (Rational Approximation of Material Properties) [7] and
is a convenient way to enforce identical material candidate selection within predefined regions
of the design domain (patches), possibly mixed with void (i.e. zero valued topology variables,
ρ) only.

The chosen parameterization in (1) implies that the mass constraint is non-linear as well.

ne∑
i=1

nl∑
j=1

ρijVij

nc∑
k=1

x
ijk

�k ≤ M (2)

In (2), �k is the mass density for candidate material k, ne is the number of elements, nl is the
number of layers, Vij is the volume of layer j in element i, and M is the allowable mass.

Let index P concern a specific patch and npa ∈ Z, 1 ≤ npa ≤ ne, denote the number
of predefined, non-overlapping patch domains, ΩP , together containing all ESL shell element
domains, ωi. To enforce candidate material continuity within the patches (MC1), x

ijk
≡ y

Pjk
for

element domains ωi within patch domains ΩP . All variables, xijk
and ρij (n

e ·nl ·nc + ne ·nl), are

used in the finite element analyses. Only substitute variables, y
Pjk

, and ρij (n
pa ·nl ·nc + ne ·nl)

enter the optimizer. Sensitivities for the substitute variables that govern candidate material
selection within the patches P , are determined as the summation of sensitivities concerning
elements i contained in patches P .
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∂c

∂y
Pjk

=
∑
i

∂c

∂x
ijk

, ∀(P, j, k) (3)

Equation (4) ensures at most 100% of one of the candidate materials in the patches.

nc∑
k=1

y
Pjk

= 1 , ∀(P, j) (4)

Letting index j = 1 represent the fixed layers with full density, i.e. ρi1 = 1, preventing
intermediate void throughout the monolithic laminate is achieved with (5).

ρij ≥ ρ
i(j+1)

, ∀i , j = 2, 3, . . . , nl − 1 (5)

Suppose element (i + 1) is a neighbour to element (i) in a stencil-like manner. A limit on
thickness change (MC2) is specified in (6) where S ∈ Z is the slope limit, 0 ≤ S ≤ nl − 1.

−S ≤
nl∑
j=1

ρij −
nl∑
j=1

ρ
(i+1)j

≤ S (6)

Combined with (4), the constraints for contiguity (MC3) enforce at most (nl−1) contiguous
identical candidate materials. The contiguity limit is denoted CL ∈ Z, 1 ≤ CL ≤ nl − 1.

0 ≤

n+CL∑
j=n

y
Pjk

≤ CL , ∀(P, k) , n = 1, 2, . . . , nl − CL (7)

Example and results

Figure 1 illustrates the setup, a 2D cantilever plate. Because of symmetry, only half of the plate
is considered (grey). The grey plate is discretized as 39 × 26 square elements in seven layers.

P = 2.0[N ]

w
=
1.0[m

]

l =
1.5

[m
]
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��
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Figure 1: Setup, a 2D cantilever plate. Figure 2: Optimized density distribution.

The plate is discretized using isoparametric degenerated 9-node ESL shell elements with five
degrees of freedom per node. Thematerial is orthotropic with Ex = 34GPa, Ey = Ez = 8.2GPa,
ν = 0.29, Gxy = Gxz = 4.5GPa, Gyz = 4.0GPa, and � = 1910.0kg/m3 . A layer has thickness
t = 1mm. Maximum mass, Mmax, is 20.055kg. A single patch implies that the material must
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be oriented identically on layer basis along one of the four distinct orientations [0◦,±45◦, 90◦].
The total number of variables in the example is 39 · 26 · 7 · 5 = 35, 490.

The presented topology optimization problem is linearized and solved sequentially, using
SNOPT with an adaptive update scheme that repeatedly scales (5) and reduces move limits on
basis of oscillation of the objective function value, c. The problem is solved in two consecutive
steps. Step 1 converges without penalization. Step 2 continues with constant penalization.

Table 1 summarizes the results of a cantilever plate subject to: M = 0.5 · Mmax, S = 1,
CL = 2. Table 2 denotes the fiber angle distribution throughout the layers, counter-clockwise
is positive. Layer 1 (the bottom layer in figure 2) is fixed, i.e. enforced full density.

# Iter p/q c

Step 1 72 0.0/0.0 0.2374E-02
Step 2 50 5.0/2.0 0.2390E-02

Layer # 1 2 3 4 5 6 7

Fiber Angle [◦] 0 0 45 0 45 0 0

Table 1: Summary of results. Table 2: Fiber angles.

Figure 2 illustrates the optimized density distribution. The result is completely binary,
x

ijk
∈ {0, 1} and ρij ∈ {0, 1}.

Concluding remarks

A novel method for simultaneous determination of material distribution and fiber orientation
in a composite laminate subject to a variety of manufacturing constraints has been presented.
The method is applicable for designs of composite structures with a fixed outer geometry but
may also be used for thickness optimization of structures with a fixed plane of symmetry. In
the example, the optimized density distribution and fiber orientation are in nice agreement with
the moment distribution in a cantilever beam/plate. The SLP strategy with a heuristic update
scheme causes large variations in the required number of iterations until convergence and the
non-convexity of the posed optimization problem entails the risk of sub-optimal local minima.
Although the presented example results in a binary design, this is not always the case. The
sensitivity of different settings for the adaptive update scheme is elaborated in future work.
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Summary. The objective of this paper is to present an approach for multi-material topology optimiza-
tion of laminated composite structures where strength constraints are taken into account together with
other global structural performance measures. The topology design problem considered contains very
many design variables, and when strength criteria are included in the problem, a very large number of
criteria functions must be considered in the optimization problem to be solved. Thus, block aggrega-
tion methods are introduced, such that global strength measures are obtained. These formulations are
illustrated for multi-material laminated design problems where the maximum failure index is minimized
while compliance and mass constraints are taken into account.

Key words: topology optimization, failure, block aggregation, global strength measures, laminated com-

posites.

Introduction

Laminated composite structures are being used in many different engineering applications due
to their superior strength and stiffness characteristics. In order to fully exploit the weight
saving potential of these multilayered structures, it is necessary to tailor the laminate layup
and behavior to the given structural needs. In many applications the glass or carbon fiber
reinforced polymers (FRP) are combined with core materials (foam, balsa tree, etc.) in parts
of the structure in order to introduce sandwich structures, which may yield better structural
performance for a given cost than monolithic fiber-reinforced polymer structures. In this work
the combinatorial problem of proper choice of material and fiber orientation is formulated as a
material selection problem using the so-called Discrete Material Optimization (DMO) approach
developed by the authors [1]. This approach relaxes the discrete material selection problem
to a continuous formulation using interpolation schemes with penalization, i.e., the material
properties are computed as weighted sums of properties of candidate materials, which may be
different kinds of fiber reinforced materials associated with given fiber angles together with core
materials. The DMO approach has been used for global measures such as stiffness, mass, cost,
eigenfrequencies, and buckling load factors of linear and geometrically nonlinear problems, and
in this work local measures of performance in terms of strength criteria are included.

Parameterization

The approach relies on newly developed interpolation schemes, see [2] for compliance problems,
that are generally applicable for interpolation between an arbitrary number of pre-defined can-
didate materials. Here the “generalized SIMP scheme” is used where the material property of
interest, for example the constitutive matrix C

eff , is computed in the following way, when there
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are nc candidate materials to choose between, each characterized by its constitutive matrix Ci:

C
eff =

nc∑
i=1

x
p
iCi, 0 ≤ xi ≤ xi ≤ xi ≤ 1,

nc∑
i=1

xi = 1 (1)

Thus, design variables xi are directly associated with candidate material i, and the penalization
power p is used to enforce a unique choice of material at the end of the optimization.

This parameterization can be applied element-wise for each layer in the finite element model
consisting of layered shell finite elements, but typically larger patches of elements, associated
with the same parameterization, are used. A large number of sparse linear constraints to enforce
the selection of at most one material in each design domain is introduced, but these constraints
are handled effectively using the SNOPT optimization package [3] using either SLP or SQP.

Strength criteria

The inclusion of strength criteria introduces a large number of highly nonlinear (local) constraints
which in combination with the many design variables introduced by the DMO approach yield a
computationally challenging optimization problem. The failure criteria used for FRP materials
are normally defined in the material coordinate system 1-2-3, and the procedure applied for
computing effective failure indices (FIeff ) with the above DMO parameterization is the following:

1. Assemble the element stiffness matrices using C
eff =

nc∑
i=1

x
p
iCi

2. Solve the linear elastic static problem (KD = F) for displacements D

3. Failure analysis postprocessing:

• For each element (ElemNo) extract the element displacement vector d from D:

– For each layer (LayerNo):

∗ Compute strain vector ε in structural coordinate system

∗ For each candidate material i:

· Transform ε to material coordinate system 1-2-3 of the candidate material
⇒ ε1−2−3

i and evaluate failure index FIi(ε
1−2−3
i )

∗ Failure index FIeff (ElemNo, LayerNo, top/bottom) =

nc∑
i=1

xi FIi(ε
1−2−3
i )

The maximum strain criterion is used for the examples in this paper, but many other failure
criteria used for laminated composites have also been implemented and can be applied. The
inclusion of strength criteria introduces a large number of criterion values (number of elements
× number of layers per element × 2). In order to reduce the amount of functions to include in
the mathematical programming problem, globalization functions are used. In this work global
strength measures (see, e.g., [4, 5, 6]) are obtained by using Kreisselmeier-Steinhauser (KS)
functions, but other globalization functions like the p-norm are also being investigated.

The efficiency of using global strength approaches decreases when a large number of values
are lumped into a single global value, but this problem can be handled by associating a global
strength measure with each patch used for the parameterization. The approach has similarities
with the block aggregation approach [6] and the regional stress measure approach [5] used for
single-material structural topology optimization problems with stress constraints.

The number of FI values, nFI , to include for each patch may be defined by the user, and for
each patch j, j = 1, . . . , nP , a KS function f(x)j is computed:
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f(x)j =
1

ρ
ln

⎡
⎣nFI∑
k=1

eρ f
j
k

⎤
⎦ or f(x)j = f j,max +

1

ρ
ln

⎡
⎣nFI∑
k=1

eρ (f
j
k−fj,max)

⎤
⎦ (2)

where ln = loge, the scalar ρ typically is between 2 and 200 (50 is used), and f j,max is the largest
FI value among f

j
k(x) , k = 1, . . . , nFI . The latter KS definition has numerical advantages.

Mathematical programming problems

With the introduction of global strength measures for each patch of the design domain, the
problem of minimizing the mass M with strength constraints (together with other constraints,
like compliance C) are directly formulated as

Objective : min
x

M

Subject to : f(x)j ≤ 1, j = 1, . . . , nP

(C ≤ C)
nc∑
i=1

xi = 1 for all design domains

0 < xi ≤ xi ≤ xi < 1, i = 1, . . . , I

(3)

where I is the total number of DMO design variables and C a compliance constraint.
Similarly, in case of minimizing the maximum failure index FI with a mass constraint (and

perhaps other constraints), the problem is reformulated using a bound formulation:

Objective : min
x, β

β

Subject to : f(x)j ≤ β, j = 1, . . . , nP

M ≤ M

(C ≤ C)
nc∑
i=1

xi = 1 for all design domains

0 < xi ≤ xi ≤ xi < 1, i = 1, . . . , I

(4)

In both cases the optimization problem must be solved by an algorithm that in an efficient
way can handle the many linear constraints (

∑
xi = 1) generated by the DMO parameterization

scheme used. The examples considered have been solved using a SLP approach where SNOPT
[3] is used to solve the LP sub-problems.

Example and concluding remarks

The approach is shortly demonstrated in the following for multi-material design of a generic
main spar from a wind turbine blade subjected to the maximum flapwise bending load case.
The midsection of the main spar is divided into 16 patches, each consisting of 10 layers of equal
thickness. The candidate materials are GFRP oriented at 0◦, 45◦, −45◦, and 90◦, GFRP ±45◦

biax mats, and foam material. The objective has been to minimize the failure index in the main
spar while fulling compliance and mass constraints. 1/5 of the design domain should be filled
with foam material. The FE model and the parameterization are seen on Figure 1, and the
results are listed in Table 1. Both constraints are active for the final design.

The candidate material associated with the largest design variable is listed in the table.
In general, a distinct choice of material is obtained in most of the design domain, and the

130



Patch
1

Patch
3

Patch
4

Patch
5

Patch
6

Patch
7

Patch
8

Patch
9

Patch
10

Patch
11

Patch
12

Patch
13

Patch
14

Patch
15

Patch
16

Patch
2

Distributed

load

Figure 1. Generic main spar from wind turbine blade.

Table 1. Results of optimization.

Patch \ Layer L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

P1 90
◦

0
◦

0
◦

0
◦

0
◦

0
◦

0
◦

0
◦

0
◦

0
◦

P2 90
◦

0
◦

0
◦

0
◦

0
◦

0
◦

0
◦

0
◦

0
◦

0
◦

P3 0
◦

0
◦

0
◦

0
◦

0
◦

0
◦

/ 90
◦

0
◦

0
◦

0
◦

0
◦

P4 0
◦

0
◦

0
◦

0
◦

0
◦

0
◦

0
◦

0
◦

0
◦

0
◦

P5 90
◦

foam foam foam 0
◦

0
◦ ∗

0
◦

0
◦ ∗

0
◦

0
◦

P6 -45
◦

45
◦

45
◦

90
◦

0
◦

0
◦

0
◦

0
◦

0
◦

45
◦

P7 45
◦ ∗

45
◦ ∗

foam 45
◦ ∗

0
◦

0
◦

0
◦

0
◦

0
◦

0
◦

P8 -45
◦

0
◦

0
◦

0
◦

0
◦

0
◦

0
◦

0
◦

0
◦

0
◦

P9 90
◦ ∗

foam
∗

foam foam foam foam foam -45
◦ ∗

-45
◦ ∗

0
◦

P10 45
◦

45
◦

0
◦

0
◦

0
◦

0
◦

0
◦

0
◦

0
◦

45
◦

P11 90
◦

90
◦ ∗

90
◦ ∗

0
◦ ∗

0
◦

0
◦

0
◦

45
◦

45
◦ ∗

0
◦

P12 90
◦

-45
◦

-45
◦

90
◦

foam foam 0
◦

0
◦

-45
◦

-45
◦

P13 90
◦

foam foam foam foam foam foam foam foam 0
◦

P14 0
◦

0
◦

0
◦

0
◦

0
◦

0
◦

0
◦

0
◦

45
◦

45
◦

P15 90
◦

foam foam foam foam foam foam foam foam 0
◦

P16 0
◦

0
◦

0
◦

0
◦

0
◦

0
◦

0
◦

0
◦

0
◦

biax45

presented approach is a step towards efficient handling of local failure criteria in topology design
of multi-material laminated composite structures.
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[6] J. Paŕıs, J., F. Navarrina, I. Colominas and M. Casteleiro. Block aggregation of stress constraints in
topology optimization of structures. Advances in Engineering Software, 41:433–441, 2010.

131



 
 

Rakenteiden Mekaniikka (Journal of Structural Mechanics) 
Vol. 44, No 3, 2011, pp. 218-230 

Optimal design of stiffened plate using 
metamodeling techniques 

Ossi Heinonen and Sami Pajunen 

SSummary. In this article mass minimization of a stiffened plate is reported. From the actual 
finite element model of the plate, surrogate models are constructed using response surface 
methodology and the Kriging method. Estimation of the structural response is carried out using 
three different design of experiment models. As a numerical example a typical off-shore 
structure is optimized with respect to stress constraint equations. The optimization procedure is 
based on the standard NLPQL algorithm with iteratively moving response estimation window. 

Key words: design of experiments, response surface methodology, Kriging method, 
metamodeling, optimization 
 
Ossi Heinonen, Sami Pajunen 
Tampere University of Technology 
Department of Mechanics and Design 
P.O. Box 589, 33101 Tampere  
ossi.heinonen@tut.fi, sami.pajunen@tut.fi 
 
 

  
 
 
 

 

132



Proceedings of the 24th Nordic Seminar on Computational Mechanics
J. Freund and R. Kouhia (Eds.)
c©Aalto University, 2011

Buckling of plates with cut-outs made of non-isotropic
materials1

Alexandr V. Lebedev2, Andrei L. Smirnov3

St. Petersburg State University
198504, 28 University Ave, St. Petersburg, Russia
(2) privater@mail.ru, (3) a l smirnov@mail.ru

Summary. Buckling of non-homogeneous elastic thin structures weakened with holes is considered. The
purpose of the study is to analyze the effect of area of the rectangular or circular holes on buckling under
compression of rectangular or circular plates made of isotropic, orthotropic and transversal-isotropic
material.

Key words: non-isotropic plates buckling, non-homogeneous plates buckling

Introduction

The research refers to buckling analysis of non-homogeneous (weakened with holes or cut-outs)
isotropic or non-isotropic (orthotropic and transverse isotropic) thin-walled elastic plates. The
purpose of the study is to examine the effect of the area and proportions of rectangular or circular
holes on critical loading of rectangular or circular plates. In the report we limit ourselves with
analysis of plates under external compressive loadings. The plates are considered to be thin
enough to apply 2D Kirchhoff-Love theory [1]. Mathematically buckling problems for plates
with cutouts are reduced to solution of the boundary value problems for non-simply connected
domain, which are solved in the research with analytical and/or numerical methods including
the Bubnov-Galerkin method [2] and FEM.

Buckling of isotropic plates

Rectangular plates

We start with analysis of isotropic thin plate under axial compressive load. The load directed
along the lateral faces of the plate, which are of the length a, the side ends have the length b
and a � b, side ratio r = a/b. Here only boundary conditions of simply supported type are
considered. The free edges of the central hole are parallel to the plate sides and for the square
hole have the length d.

For uniform shells the buckling load may be found analytically [1], for shells with holes the
results obtained by means of Bubnov-Galerkin method are reported in [2]. Here we compare
them with the results of the numerical analysis of the problem by means of FEM package
ANSYS. The most important and interesting is the effect of the hole area on critical buckling
loadings and buckling modes.

In Fig. 1a one can see the effect of the plate sides ratio on the critical loading for a plate with
the relative thickness h = 0.01 and the Poisson coefficient ν = 0.3, where q0 and qcr are critical

1The research was supported by grant N 10–01–00244-a from Russian Foundation for Basic Research.
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buckling load for a homogeneous plate and for a plate with the square hole respectively, n —
the number of waves in transversal direction, d = 0.1. It appeared that the critical buckling
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(a) Effect of the plate side ratio on
critical loadings for the plates with
hole d = 0.1 (dashed lines) and ho-
mogeneous plate.
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(b) Effect of the hole area on critical
loadings for circular plate with circu-
lar hole radius r.

Figure 1: Buckling of isotropic plates.

loadings may either increase or decrease. Presumably the effect when “mechanical buckling
strengths of the perforated plates, contrary to expectation, increase rather than decrease as
the hole sizes grow larger” was firstly reported in [4]. In our research it was found that, for
example, for axially compressed rectangular plate for buckling nodes with odd wave numbers
the critical loading decreases with the hole area and increases for even wave numbers [5]. The
explanation of this phenomenon is in the initial compressive stresses developing in the narrow
strips between the hole and the plate edges. One should remember that a hole not only affects
the plate stiffness but also influences on the initial stress-strain state. These initial stresses are
higher for the stronger supports of the lateral edges of the plate and they increase with the
Poisson ratio. That leads to the growth of the critical load.

The ratio of the hole sides plays an important role. For buckling under axial loading for all
cases the extension of the hole in the axial direction leads to decreasing of the critical loading.
For a hole elongated in the transversal direction the width of a strip is smaller and the intensity
of the initial stresses is higher and the critical loading increases. The change of the ratio may
also cause the switch of the buckling modes.

Circular plates

For the circular plate (radius R) with the central circular hole (radius r) under radial compressive
load q the dependence of the critical load on the hole area is more predictable. The main effect
has the decreasing of the plate stiffness with the hole area and the critical load goes down
monotonously with the hole area. In Fig. 1b we compare numerical results for the critical
loadings (dashed lines) and those obtained in [3] by method of initial parameters (solid lines).

Buckling of orthotropic plates

The buckling behavior of non-isotropic plates has some specific features. As an example we
consider buckling of a plate made of orthotropic material with Young modules Ex, and Ey,
Poisson ratios νxy and νyx and shear modulus G. Since we wish to study the effect of non-
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(b) Circular plate R = 1: 1 – homoge-
nous plate, 2,3,4 – plate with central
circular hole r = 0.1; 0.2; 0.3 respec-
tively.

Figure 2: Buckling of orthotropic plates

isotropy on the buckling load we assume that

Ex = E0(1 + |ε|)sign ε, Ey = E0(1 + |ε|)− sign ε,
νxy = ν0(1 + |ε|)sign ε,

Exνyx = Eyνxy = E0ν0, G = E0/(2(1 + ν0)).
(1)

So, for small ε this material is almost isotropic. For positive ε the material is stiffer in the
x-direction, for negative ε — in the y-direction.

Rectangular plates

The effect of orthotropy on buckling load of the rectangular plate with a central square hole
with different hole area S∗ = d2 under axial compression is shown in Fig. 2a, where N0 and Ncr

are critical buckling loads for plates without and with a hole respectively. Even for relatively
small hole the effect of non-isotropy is very significant: if the plate becomes stiffer in the axial
direction and softer in transversal the critical buckling loading decreases very speedy with ε > 0
and for the plate stiffer in the transverse direction the critical buckling loading increases. One
more time it underlines the crucial effect for buckling of the initial stresses ”carried by the
narrow side strips of material along the plate boundaries” [4].

Circular plates

Similar the critical loading for a orthotropic circular plate with a central circular hole under
radial compression depends on the material properties. Here the important effect has the initial
stresses in the circumferential direction. For materials (1) stiffer in the circumferential direction
(ε < 0) the critical load increases (see Fig. 2b).

Buckling of transversally isotropic plates

Finally we consider buckling behavior of transversally isotropic plates with the following elastic
modules:

Ex = Ey = E0(1 + |ε|)sign ε, Ez = E0(1 + |ε|)− sign ε,
νxy = νyx = ν0(1 + |ε|)sign ε,

Exνyx = Eyνxy = Ezνxz = E0ν0, G = E0/(2(1 + ν0)).
(2)

For positive ε the material is stiffer in the x, y-direction (in plane), for negative ε — in the
z-direction (along the thickness).
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Figure 3: Buckling of the transversally isotropic plates

Rectangular plates

For rectangular transversally isotropic plates, the effect of the material is shown in Fig. 3a. For
the materials stiffer in plane (ε > 0) the buckling load is higher and the buckling mode essentially
depends on the stiffness parameter. For small ε the critical load is also increases with the hole
area.

Circular plates

For the transversally isotropic circular plates the change of the ratio of in plane and in thickness
Young modules leads to increasing of the critical buckling load. The critical buckling load
monotonously decreases with the hole area.

Conclusions

The presence of the hole or cut-outs may lead to either increasing or decreasing of the criti-
cal buckling load for the compressed plates depending on the boundary conditions, geometric
parameters of the plate and the hole and material property. For the rectangular plates the
principal effect has the stresses in the lateral strips. For buckling of circular plates the material
properties play the key role.
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Summary. Axially moving materials are encountered in many applications, for example tape and op-
tical drives, band saws, and some manufacturing processes such as those for paper and steel. Analysis
of the complex eigenfrequencies of time-harmonic vibrations in the linear regime for small transverse
displacement is a common tool to obtain insight into the stability and vibration characteristics of the
system. In the talk, we consider practical challenges that are encountered in this analysis. The issues
are viewed in the light of the examples of the moving ideal string, and the moving panel submerged into
axially flowing ideal fluid.
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Introduction

Much research into axially moving materials such as strings and beams, described by second-
and fourth-order partial differential equations respectively, has been performed during the last
slightly over one hundred years, beginning with the seminal paper by Skutch in 1897 [20].
Some classical examples of this research are Archibald and Emslie 1958 [1], Miranker 1960
[12], Swope and Ames 1963 [21], and Simpson 1973 [19]. Also the very extensive research, e.g.
[13, 14, 15, 16, 23, 24, 27, 10, 11], by the group of C. D. Mote deserves a mention.

The most important result from the literature is that axially moving materials are inherently
unstable, sharing some behavioural characteristics, and some mathematical form, with axially
compressed beams and plates. The axial transport velocity plays the role of an effective axial
load.

In the paper making community, there is interest into the problems of transverse vibration
and stability of axially moving materials, because paper machines contain so-called open draws,
where the paper web travels without mechanical support. The model is often geometrically
linearized in the small displacement regime. This simplifies the analysis significantly, and allows
the decoupling of the in-plane and out-of-plane displacements (as is well-known from classical
Kirchhoff plate theory).

Because paper is a very light material, the fluid-structure interaction (FSI) with the sur-
rounding air becomes important to consider. The interaction effects may change both the
eigenfrequencies and the critical velocity of the system [17, 18, 7, 26, 8, 9].

In our own research, we have analyzed the static stability (the buckling problem) of moving
isotropic and orthotropic rectangular plates with SFSF boundary conditions in vacuum [3, 2].
For the simpler case of cylindrical deformation, we have studied the FSI aspects in the ideal
fluid framework. We have introduced a semi-analytical functional solution for the aerodynamic
pressure difference over the panel surface, by using ideas from thin airfoil theory. This has been
performed for both the steady-state [4] and dynamic [5] cases. In both, we have allowed for
axial motion of the surrounding fluid.
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Eigenfrequencies

Consider the small transverse free vibrations of an axially moving, tensioned string moving
through two pinholes. The governing PDE and its boundary conditions (BCs) are

mwtt + 2mV0wxt + (mV 2
0 − T0)wxx = 0 , w(−�, t) = w(�, t) = 0 , (1)

where w is the transverse displacement, m is mass per unit length, V0 is the axial velocity, T0

is the tension applied at the ends of the string, and the x and t subscripts denote derivatives.
The symbol � denotes the half-length of the span.

For the eigenfrequency analysis (and dynamic stability analysis) of a linear model, it is
standard [6] to use a complex-valued time-harmonic trial function

w(x, t) := exp(st)W (x) , (2)

where s is the complex eigenfrequency and W (x) is the eigenshape. The eigenfrequency problem
is to find pairs (s,W ) such that (2) satisfies (1). In the continuous case, there are a countably
infinite number of eigenvalues, which form the eigenfrequency spectrum of the problem.

For the panel problem, we have

mwtt + 2mV0wxt + (mV 2
0 − T0)wxx +Dwxxxx − qf (w) = 0 , (3)

where D is the bending rigidity of the panel ([22], p. 5) and qf is the aerodynamic reaction,
expressed as an integrodifferential operator (for details, see [5]). The customary boundary
conditions are the simply supported (pinned) ones, i.e.

w(−�, t) = w(�, t) = wxx(−�, t) = wxx(�, t) = 0 .

It should be noted for both problems that if V0 �= 0, in general also the eigenshapes W (x) will
be complex-valued (see e.g. [27]).

Discretization and solution

As is usual, we discretize the PDE in space first. In this study, we used Fourier–Galerkin for
both problems. Additionally, for the ideal string problem, we used standard linear FEM, and
derived the analytical solution for comparison.

After space discretization of (1) or (3), using n degrees of freedom, we have

M2f
′′(t) +M1f

′(t) +M0f(t) = 0 , (4)

where Mj are matrices in R
n×n, the primes denote time derivatives, and f(t) : R → R

n is the
vector-valued solution function for the Galerkin coefficients. We assume that the basis for our
Galerkin discretization is chosen such that it fulfills the appropriate boundary conditions iden-
tically. The matrices M2 and M0 are symmetric, and M1 is skew-symmetric (antisymmetric).

In the standard way, define u(t) := [f ′(t) f(t)]T . We obtain u
′(t) = Mu(t), where

M =

[
−M

−1
2 M1 −M

−1
2 M0

1 0

]
. (5)

Here 1 is the n × n identity matrix, and 0 denotes an n × n matrix of zeroes. The matrix
M ∈ R

2n×2n. Now, choose the trial f(t) := F exp(st), insert to (4), multiply from the left by
M

−1
2 , and discard the common scalar factor exp(st). We obtain the flutter equation

L(s)F :=
(
s2 +M

−1
2 M1s+M

−1
2 M0

)
F = 0 , (6)
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where L(s) ∈ C
n×n. The problem is to find pairs (s,F) ∈ (C,Cn) such that (6) is satisfied

nontrivially. We easily see that values of s making L(s) singular are the eigenvalues of M. Thus
we solve Mx = sjx, obtaining 2n solutions s1, s2, . . . , s2n.

Finally, the corresponding eigenmodes can be obtained from the SVD of L(s) = UΣV,
performed separately for each solution s = sj . In practice, for each sj , the null space of L(sj)
is one-dimensional. It is easy to show that the column of V corresponding to the zero diagonal
entry in Σ (for a given sj) contains the Galerkin coefficients for the corresponding eigenmode.

The practical challenges

The solution process described above is well-known; the main topic of the talk are its practical
challenges. The first challenge is that the sj are returned in a random order, although the
problem is continuous. Thus, in order to plot the evolution of the sj as lines in the parameter
space, one needs to track the modes as the parameter values are changed.

Another important challenge is the identification of correct solutions. It is fairly easily seen,
by comparing to the analytical solution, that both numerical solutions of the ideal string problem
have a qualitative problem. The eigenvalues of the ideal string are known to be purely imaginary
for all parameter values; however, the numerical solutions suggest flutter bifurcations. These
occur above the critical velocity, but as there are indications that the critical velocity of the ideal
string may not represent an instability (see [25]), the appearance of such numerical artefacts
should be considered in order to determine the range where the numerical solutions are valid.

In the talk, these issues are illustrated and partial solutions are suggested.
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SSummary. This article deals with the mathematical modeling by damage mechanics of the 
buckling and post-buckling of structural systems such as reinforced concrete columns. 
Imperfection sensitivity is found for such a class of structural elements. 

Key words: reinforced concrete columns, buckling, softening, limit point, imperfection analysis 

Introduction 

It is accepted that slender reinforced concrete columns must be designed taking into account the 
second order effects produced by the axial loads on the deformed member. The main 
international rules, including for instance Eurocode 2, are based on this concept for the design 
of reinforced concrete columns. Various methods based on empirical or theoretical approaches 
have been published in the past, that all introduced some necessary realistic imperfections 
through additional geometrical eccentricities (see recently Mari and Hellesland [1]). There are 
numerous textbooks devoted to the elastic or inelastic buckling of columns (see for instance 
Bažant and Cedolin [2]). But the link between imperfection sensitive structural models and the 
buckling phenomena of reinforced concrete columns was not clearly highlighted in the authors’ 
point of view, at least not from simple physically based models. In this paper, we will show, 
using a simple softening one-dimensional model based on continuum damage mechanics (CDM 
theory), that the buckling of reinforced concrete columns is associated with a limit load which 
decreases with the imperfection considered. Furthermore, we will derive a universal load-
imperfection relationship that can be useful for structural design (Koiter’s ½ power law, see 
[3]). The problem handled in this study is not so different from the elastica problem  of  a  
softening column, as already numerically investigated by Oden and Childs [4], Wang [5] or 
Brojan et al [6]. These authors also noticed that buckling of softening systems may lead to the 
imperfection sensitivity phenomenon. However, our study is based on continuum damage 

141



mechanics arguments, specifically applied to a simplified model of a cantilever reinforced 
concrete column, in which all material nonlinearities are concentrated in a nonlinear softening 
spring at the column base. Though simplified, this column will still give some qualitatively 
useful results. In particular, the specific imperfection sensitivity law that we find in this study is 
significantly different from the ones highlighted in the studies cited above. 

Single-degree-of-freedom model 

 

 
 
 
 
 
 
 
 
 

 
 
 

 
Figure 1. Discrete spring-mass model. 

 
We adopt a simple nonlinear inelastic single-degree-of-freedom system (Fig. 1). The spring is 
assumed to behave with a damage law defined by: 
 

� � DkM �� 10     (1) 
 

where M  is the bending moment,   is the rotation of the spring, D  is the damage variable, 
which is a measure of the integrity of the spring. D  evolves between 0  for a virgin 
(undamaged) spring and 1 for the totally broken spring. 0k  is the initial stiffness of the spring. 
The damage loading function of this model is postulated as (see also Challamel et al [7]): 
 

� � DDf
Y

2, ��
 

 
     (2) 

 
where Y  is the rotation associated with the maximum moment in the spring. For a monotonic 
increasing evolution of the rotation, which this study is limited to, the loading function is 
vanishing, i.e. � � 0, �Df  . The resulting monotonic moment – rotation curve becomes 
parabolic with a maximum reached for the rotation Y . The equilibrium of the system can 
readily be obtained in the geometrically exact form as: 
 

  cossin 0PePLM ��     (3) 
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Considering Eq. (1), Eq. (2) and Eq. (3), the general nonlinear load-rotation relationship can be 
written as: 
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This relationship is shown in Fig. 2 for different initial eccentricities *

0e .  We note that it has a 
symmetrically unstable bifurcation � �0*

0 �e with softening branches. From an asymptotic 
expansion of Eq. (4), it can be expressed by: 
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    (5) 

 
The interesting result is that the post-buckling branches at the bifurcation point intersect with a 
sharp angle, even if the system is a symmetrical one in the absence of additional eccentricities. 
This type of bifurcation is generally present for unsymmetrical bifurcation and it is notable here 
that this phenomenon occurs due to the specific damage evolution in the inelastic spring. 

Imperfection analysis 

 
Unlike  the  symmetrical  behaviour  for  the  perfect  case,  the  behaviour  in  presence  of  an  
imperfection is unsymmetrical, as seen in Fig. 2. 

 
Figure 2. Bifurcation diagram; 5.0�Y ; ( )01.0;0*

0 �e  
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It can be shown that the limit load cp  of  the  imperfect  problem as  defined  in  Fig.  2,  can  be  
expressed for sufficiently small eccentricities by: 
 

...21 *
0 ��� ep

Y
c  

    (6) 

 
This can be cast in the form of a universal rule. One recognizes that this is the same as Koiter’s 
½ power law (see Koiter  [3]  or  Bažant  and Cedolin [2]).  However,  this  extreme sensitivity of  
the limit load with respect to the eccentricities (or more generally with some imperfections) is 
generally found in asymmetrical structural systems as pointed out by Bažant and Cedolin [2]. It 
is remarkable in the present damage problem that this strong imperfection sensitivity appears in 
an initially symmetrical structural problem, where some angular bifurcation points control the 
perfect system. 
 

Conclusions 

 
It has been shown using a simple continuum damage mechanics single-degree-of-freedom 
system, that imperfection sensitivity may arise in buckling of reinforced concrete columns. A 
new engineering equation has been presented for the limit load-dependence on the imperfection. 

We are now extending the analysis to the continuum column problem, where the complete 
post-failure analysis has certainly to include some non-locality. 
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Summary. In this article we aim to demonstrate some unexpected behavior of the critical solution
of a non-linear eigenvalue problem if linearization with respect to the critical parameter is used as an
approximative method to find the critical point.
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Introduction

Polynomial approximation with respect to the critical parameter (and in particular linear ap-
proximation) of a non-linear eigenvalue problem, evaluated at the origin, is currently the most
widespread method used in stability analysis. As a matter of fact linear approximation is cur-
rently the only possibility in commercial finite element programs. The reason is that linearization
is fast, robust and simple to use compared to other methods, such as path following methods
with singularity check (Riks, 1974) or direct computation of augmented non-linear eigenvalue
problem (Keener and Keller, 1973), (Moore and Spence, 1980), (Wriggers and Simo, 1990),
(Mäkinen et al., 2011).

As far as highly non-linear problems are concerned, even though the critical value given by the
linear approximation is too erroneous to be used for engineering applications, the approximated
critical mode has usually been considered as reliable. In other words the minimum positive
critical mode given by the linear approximation would be suitable to use as initial imperfection
for imperfection analysis or together with the approximated critical value as a starting point for
direct computation of the of augmented non-linear problem. However, in this paper we shall
demonstrate that there are situations when the minimum positive critical mode given by the
linear approximation is not approximating the minimum positive critical mode of the full non-
linear problem, but rather a mode that is associated with higher positive eigenvalue, negative or
even non-real eigenvalue. We shall define that in such a situation the linearized approximation is
degenerate. If such a situation occurs, then all attempts to perform imperfection analysis using
a degenerate critical mode or direct computation of augmented non-linear eigenvalue problem
starting from a degenerate critical mode will obviously give erroneous results.

We shall first consider the non-linear eigenvalue problem and the linear approximation thereof
at a very general level, then give some practical examples of unexpected behavior of the linear
approximation.
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The non-linear eigenvalue problem

Consider a non-linear eigenvalue problem, where the entries of the matrix A depend smoothly
on the critical parameter.

A|
λnl

qnl = 0 (1)

The solution eigenpair for equation (1) is (λnl, qnl). Consider then a polynomial approximation
at the origin with respect to the critical parameter:

k∑
i=0

λpol i

i!

diA

dλi

∣∣∣∣
0

qpol = 0 (2)

The solution eigenpair for that polynomial approximation is noted (λpol, qpol). In figure 1 we
have represented graphically the behavior of a non-linear eigenvalue problem and the linear ap-
proximation. The influence of non-linearity on the critical value can be depicted most effectively
in the matrix space Rn×n. In that space the set of points for which the matrix is singular (rank
deficient 1) can be viewed as a smooth n2 − 1 manifold M . The set I corresponds to the
graph of the non-linear matrix valued function A : λ → A|λ, and the intersection between M

and I corresponds to the singular matrix A|λnl . In a similar way, the intersection between the
manifold M and the linearized function corresponds to the singular matrix A|

0
+ λlin A′|

0
. If

the dependence of the matrix A on the parameter is highly non-linear, as in the example case
depicted in figure 1, it is natural that the relative error between the critical value λln and λlin is
very important.

R
n

KerA
|
λnlK
erA

|
0 +
λ lin

A
′
|
0

�

A|
0
+λlinA′

|
0

×
A|

λlin

�

A|
λnl

+
A|0

M ⊂ R
n×n

I

Figure 1. Left: graphic representation of the criticality manifold M and the set I given by the (non-
linearly) parameter dependentmatrix A|

λ
as well as the linear approximation thereof. Right: Eigenspaces

for the non-linear eigenvalue problem and the linear approximation.

However, as we can see on the picture on the right in figure 1, the eigenspace of the non-
linear problem KerA|λnl and the eigenspace of the approximation Ker A|

0
+ λlin A′|

0
are rather

distant from each other. The linearized eigenvalue problem shall be called degenerate if the
relative error between the eigenmodes 1−〈q lin, qnl〉 is higher than a user defined threshold level.
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Application to bifurcation problems in mechanics

In the field of mechanics stability analysis of quasi-static discrete or discretized systems is tradi-
tionally analyzed using the Dirichlet (or energy) criterion (Koiter, 1976) although a full under-
standing of stability phenomena requires a time dependent approach (Knops and Wilkes, 1974).
Hence the non-linear eigenvalue problem issued from a quasi-static mechanical system can be
given as a criticality condition subject to equilibrium condition:{

J |
(pnl,λnl)

qnl = 0

f (pnl, λnl) = 0
(3)

where pnl, qnl, λnl denote respectively the state variable, the eigenmode and the critical param-
eter at the critical point. The vector valued function f denotes the defining function of the
equilibrium equation and the matrix J denotes the Jacobian of that defining function. Assum-
ing that in the neighborhood of the origin the jacobian of the defining function is invertible, we
can find a function p : λ → p(λ) via the implicit function theorem and linearize equation (3) at
the origin with respect to the critical parameter:⎧⎨

⎩
[
J |

(0 ,0)
+ λlin

(
∂pJ |

(0 ,0)
(p ′|

0
) + ∂λJ |

(0 ,0)

)]
q lin = 0

∂pf |(0 ,0) (p
′|
0
) + ∂λf |(0 ,0) = 0

(4)

where q lin, λlin denote respectively linear approximation of the the eigenmode and the critical
parameter at the critical point, and as we have previously showed, there might be situations
where the linearized eigenvalue problem (4) is degenerated.

Clearly this degenerate character has to do with non-linearity of the eigenvalue problem in
the neighborhood of the origin, as can be seen from figure 1. However, as we start analyzing
applied problems, given by equation (3), we have to be cautious what non-linearity we are
talking about. In bifurcation problems the primary equilibrium path can be, indeed, quasi-
linear and still we have a degenerate linear approximation. It is not even the non-linearity
of the secondary equilibrium path in the neighborhood of the critical point that affects the
degenerate character of the linear approximation, but rather the non-linearity of the jacobian
in the neighbourhood of the origin. Therefore it is not easy to predict the degenerate character
of the linear approximation by examining only the bifurcation diagram of the equilibrium path.

Considering observations made on simulations of mechanical structures, it seems that the
degenerate character of the linear approximation is closely related to a possible mode interaction
in a given structure. Intuitively it makes sense that if the switch from one critical mode to
another occurs at a given geometric parameter value when full non-linear analysis is used, then
if linear approximation is used instead the mode switch would happen for a slightly different
geometric parameter. Therefore all structures that lie within that “gap” with respect to the
geometric parameter will show a degenerate linear approximation of the eigenvalue problem.

Figure 2 shows a practical example of what can happen when analyzing out-of-plane buckling
of initially plane truss structures. Lateral sway of the top chord has been prevented at node
points in order to reflect the lateral stiffening provided by purlins and roof sheeting. We can
clearly see that the eigenmode given by the linearized approximation is characterized mainly
by flexural buckling of the top chord. On the other hand the eigenmode given by the full non-
linear solution is characterized by rigid body motion of the compressed diagonals combined with
flexural buckling.
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Figure 2. An example of degenerate linear approximation for a Warren truss with 4 diagonals, allmembers
60 × 60 × 3 closed steel cross-sections. Left picture: result of the linear approximation analysis. Right
picture: result of the full non-linear analysis

Conclusions

Numeric analysis of bifurcation problems using linear approximation of the eigenvalue problem
can possibly lead to large errors not only for the eigenvalue but also for the eigenmode. In the
latter case the linearized eigenvalue problem is called degenerate and the linearized result is
useless for engineering considerations.
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Static instability analysis of an elastic band 
travelling in the gravitational field 

Nikolay Banichuk, Juha Jeronen, Tytti Saksa and Tero Tuovinen 

SSummary. Static instability analysis is performed for an axially moving elastic band, which is 
travelling at a constant velocity in a uniform gravitational field between two supports. The 
buckling of the band is investigated with the help of admitting small transverse deflections. The 
model of a thin elastic beam (panel) subjected to bending, centrifugal forces and 
nonhomogeneous tension (including a gravitational term) is used. Buckling analysis and 
estimation of the critical velocities of elastic instability are based on variational principles and 
variational inequalities. As a result, explicit formulas for upper and lower limits for critical 
velocities are found. It is shown analytically that a critical velocity always exists. The critical 
buckling modes are found, first, by solving the original differential equation directly, and, 
secondly, by energy minimization. The buckling modes and corresponding critical velocities are 
found and illustrated with some numerical examples. The gravitational force is shown to have a 
major effect on the buckled shape, but a minor effect on the critical velocity. 
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Summary. A power theorem for a multibody system is derived  

Key words: multibody dynamics, equations of motion, power theorem 

Introduction 

Consider a multibody �  consisting of N  rigid or elastic bodies (parts): , ,...,1 N* * �� . The 

transplacement of a part is given by a mapping ( , ; ),   ( , ; ) nx t q X t q X* *+� � � � 0B� �  where 
*
0B  is a reference placement for part *�  and ( , ,..., )1 2 n nq q q q� �,-�  are configuration 

coordinates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Transplacement of multibody part. 

Reference placement

- : nq space �  

1q

q
�  

,

nq  

*
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x �
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*
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( , ; )t q*+ .  Present placement 
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A central issue in multibody dynamics is the formulation of geometrical or kinematical 
constraints representing conditions on the relative motions between parts of the mechanical 
system and the associated formulation of the equations of motion, see Lidström [1,2]. In 
general, the kinematical (bilateral) constraint will lead to a system of first order ordinary 
differential equations  

0 m 1g g q 0 �� ��

where ( , ) m 1
0 0g g t q �� ��  and ( , ) m ng g t q �� ��  are the constraint matrices. A formulation of 

the equations of motion for the constrained mechanical system may, for instance, be obtained by 
invoking the Lagrange - d’Alembert equations of motion,

( ) 1 n

d T T
Q 0

dt q q �
� �

� � �
� ��

where ( , , )T T t q q� �  is the kinetic energy of the multibody, ( , , ) 1 nQ Q t q q �� �� �  is the so-called
sum of the generalized forces acting on the multibody due to internal, contact and body forces. 

One part of Q  is the force ( , , )kc kc 1 nQ Q t q q �� �� �  due to the kinematical constraints. The so-
called ‘nonholonomic principle’ states that 

kc TQ g/�

where the ‘multipliers’ ( ) m 1t/ / �� ��  represent components of constraint forces and moments. 
A justification of the nonholonomic principal may be based on the principle of virtual power. 

The initial value problem for the motion of a constrained multibody system may be written 

( ) ,   ( )

T sum
2 1 n

0 m 1

0 0

q M Q 0

g gq 0

q 0 q q 0 q

�

�

� � �
	

� �

	 � ��

��

�

� �

(1)

where ( , ) ( , )0 0 0 0 m 1g 0 q g 0 q q 0 �� �� . In (1) 2M  is the mass matrix and sumQ  is the sum of the 
generalized forces on the multibody. This sum may be written 

sum res kcQ Q Q� �  (2) 

where res cif i ec b ricQ Q Q Q Q Q� � � � �  is the residual generalized force, cifQ  is the 
complementary inertia force and iQ , ecQ  and bQ  are the generalized force due to internal, 
external contact and body forces, respectively. Furthermore, ric ic kcQ Q Q� �  is the reduced 
internal contact force, i.e. internal contact forces not including the constraint forces. The internal 
generalized contact forces may be written 

,

N
ic

1

1
Q I

2
*0

* 0 �

� 1  (3) 
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where the mechanical interaction I*0  between parts *�  and 0� is given by 
 

 I Q Q*0 *0 0*� � ,  ( ),   ,   ,...,

t

k kQ da x k 1 n
*0

*0 * *0 * 0� . � �� x t
S

 (4) 

t
*0S  is the contact surface between parts *�  and 0� , ( , , ) ( , ( ); )k k

t q x t q t X
q

*
* +�

�
�

x  and *0t  is 

the traction vector acting on *�  from 0� .
 

The power theorem 

We split the generalized forces, except for the internal contact forces icQ  into one conservative 
and one non-conservative part, i.e. 
 

  i ec b con nonQ Q Q Q Q� � � �  (5) 
 

where conQ  is a conservative force with potential ( , )V V t q� , i.e. 

 

 con
k k

V
Q

q

�
� �

�
 (6) 

 

and nonQ  is the non conservative generalized force containing the non-conservative parts of the left hand 

side in (5). If the specific body force is conservative with the potential bV , then the potential ( , )V V t q�  

will contain the sum e bV V�  where eV  is the elastic energy, which for a St. Venant-Kirchhoff 

material is given by ( ,* */ 2  Lame moduli) 
 

 ( ( (tr ) ) ( ))

0

N 22
e

1

1
V dv X

2*

* * * *

*

/ 2
�

� �1 � E E
B

 (7) 

 
The mechanical energy, E, of the multibody is defined by 

 

 
n

k
k

k 1

E p q L
�

� �1 �  (8) 

where ( , , )L L t q q� �  is the Lagrangian and k k

L
p

q

�
�
� �

 are the components of the so-called 

generalized momentum. The power expended by forces maintaining the kinematical constraints 
is defined by 
 

  kc kcP Q q� �  (9) 
 
Proposition 1 
 
 kc T

0P g /� �  (10) 

152



which implies that for  a multibody with homogeneous constraints kcP 0� . 
 

The constraint forces supporting homogeneous constraints are thus powerless. The powers 
icP  and ricP  expended by the internal and residual internal contact forces, respectively are 

defined by ic icP Q q� � , ric ricP Q q� �  and ic ric kcP P P� � . 
 
Theorem 1 (The Power Theorem) 
 

 non ric kc L
P P P E

t

�
� � � �

�
�  (11) 

 

where nonP  is the power expended by the nonconservative forces, i.e. non nonP Q q� � . For a 

multibody with homogeneous constraints non ric L
P P E

t

�
� � �

�
� . 

 
Theorem 2  The initial value problem (1) is equivalent to 
 

 
( )

( ) ,   ( )

resT T 1
2 c n 1

0 0

g
M q Q g q q 0

q

q 0 q q 0 q

3 �
�

�� � � �	 �

	 � ��

� ���

� �

 (12) 

 
where ( , ) ( , )0 0 0 0 m 1g 0 q g 0 q q 0 �� ��  and 
 

 res res T
cQ Q R� ,  n nR I P�� � ,  T 1 1 n n

2P g gM3 � � �� ��  and 1 T m m
2gM g3 � �� ��  

 
res
cQ  is called the constrained residual generalized force. The matrices R  and P  are  

projections, i.e. 2 2
n nR P I �� �  and n nP 0 �� . Furthermore, ( )Trange g  is a linear subspace of 

( )range P . The Lagrangian multipliers (constraint forces) are given by 
 

 ( ( ) )1 1 resT 1
2

g
g M Q q q

q
/ 3 3� � � �
� � �

�
� �  (13) 

 
and  then, according to (10) 
 

 ( ( ) )kc T 1 1 resT
0 2

g
P g gM Q q q

q
3 � � �

� � �
�

� �  (14) 
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SSummary. This paper presents a numerical method for simulating the dynamic Brazilian disc 
test on rock using the Split Hopkinson Pressure Bar apparatus (SHPB). The method includes a 
material model based on viscoplasticity and damage mechanics for rock and a FEM based 
explicit time marching technique for simulating the dynamics of the SHPB apparatus. 
Simulation results are verified experimentally on the Kuru granite.   

Key words: dynamic Brazilian disc test, split Hopkinson pressure bar, FEM, rock fracture 

Introduction 

The  tensile  strength  of  brittle  materials,  such  as  rock  and  concrete,  is  usually  much,  up  to  15  
times, lower than their compressive strength. Moreover, both strengths display a significant 
loading rate hardening effect, which is particularly pronounced for the tensile strength. 
Therefore, a numerical model aiming at realistic prediction of rock behaviour under dynamic 
loading conditions should take the loading (strain) rate sensitivity into account. The dynamic 
tensile strength of rock can be indirectly measured using the Split Hopkinson Pressure Bar 
apparatus with the so-called Brazilian disc (BD) specimens [1].  

This paper presents some preliminary results on an on-going project at TUT, the purpose of 
which is to provide experimental data on the dynamic tensile strength and failure modes of the 
Kuru granite. The data is used in (dynamic) calibration and verification of the material model 
for the rock under low-velocity impact loadings [2]. The main application of the model is the 
simulation of percussive rock drilling.  

In the numerical simulations the failure mode and the dynamic tensile strength predicted 
with the present modelling approach are compared to the results of the experimental work 
carried out at the Department of Materials Science of TUT.  

Principle of the SHBP apparatus with a Brazilian disc sample 

The principle of the SHPB test apparatus with the Brazilian disc sample is shown schematically 
in Figure 1. 
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Figure 1. Schematic picture of the SHPB setup for the dynamic BD test.  

The striker bar impacts the free end of the incident bar generating a compressive stress wave 
(incident pulse), which travels through the incident bar and the BD sample causing its 
diametrical splitting. The incident, transmitted and reflected pulse strains, 
i, 
t, 
r, respectively, 
are measured as a function of time by the strain gages indicated in Figure 1. Moreover, a pulse 
shaper of relatively soft material (copper, rubber) is utilized in order to reach the dynamic stress 
equilibrium by increasing the rise time of the incident stress pulse. The indirect tensile strength 
of the specimen can be calculated, based on the elasticity solution of the quasi-static problem, as  

                                                        LDPT 45 /2�   (1) 

where P is the force acting on the specimen with length L and diameter D. The dynamic forces 
acting on both sides of the BD specimen are calculated using Equations (2) [1] 

                                    tbbribb EAPEAP ��� ��� 21 ),(   (2) 

where Ab and Eb are the cross-sectional area and Young’s modulus of the bars, respectively. 

Theory of the simulation model 

Constitutive model for rock 

The constitutive model for rock is based on the consistent viscoplasticity and isotropic damage 
concept. The viscoplastic stress states are indicated by the Drucker-Prager and Rankine type of 
yield criteria formulated in the principal stress space as 

                               
),(),,(

 ),(),,(

MRMRt
23

1MRMRMR

DPDPDP1DP2DPDPDP

��5��

��*��

��

��

ff

ckIJf

ii �671�

���

��

�
  (3) 

where c, ft are the cohesion and the tensile strength of the material, respectively, and �MR, �DP 
are the internal variables in tension and compression, respectively. The cohesion and tensile 
strength are rate dependent as follows:  

                            MRMRMRMRt0tDPDPDPDP0 , ���� �� shffshcc ������        (4) 

where hDP, hMR are the plastic (softening) moduli in compression and tension, respectively, and 
sDP, sMR are the viscosity moduli in compression and tension, respectively. Generally, the 
viscosity moduli depend on the loading rate and should thus be formulated accordingly if the 
hardening effects are to be realistically predicted in a wide range of loading rates. In the present 
preliminary study, however, constant values were assumed. 

In the damage part of the model the standard phenomenological isotropic (scalar) damage 
model is employed with a typical exponential damage function 


r 
Pulse shaper 


i v0 

Transmitted bar BD sample Incident bar Striker bar 

Strain gauges 

P1 P2 


t 
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                                � �� �vp
eqvttttt exp11 �08 ����� AA        (5) 

where At, 0t are the parameters controlling the final value and the initial slope of the damage 
variable 8t, respectively, and 
vp

eqvt is a cumulative equivalent viscoplastic strain that serves as a 
history variable. The damage variable defined in (5) operates only on the positive part of the 
principal stress vector. Thus, the damage model governs the softening and stiffness degradation 
in tension while the viscoplastic softening law (4) governs the softening in compression. 

The values of the softening moduli are determined based on the fracture energies GIc and 
GIIc as �t = ft0he/GIc and hDP = -fc0

2he/2GIIc where fc0 is uniaxial compressive strength and he is a 
characteristic length of a finite element. Mesh objective and realistic dissipation is obtained 
through this choice of the softening moduli values. In tension hMR = 0.  

As for the stress return mapping, it is performed independently of damage in a standard 
manner in the effective stress space.  

 The microstructural heterogeneity of the rock has a major influence on its failure processes. 
Here, the statistical method based on the Weibull distribution is selected for characterising the 
rock strength heterogeneity at the mesoscopic level. 

 
SHPB simulation model  

The SHPB test setup with the BD sample of rock is modeled as described in Figure 2.  
 

 

Figure 2. Principle of the dynamic BD test simulation model. 

As the purpose is to simulate the dynamic BD test on rock, the bars of the SHPB apparatus are 
modeled by two nodes (see Figure 2) with one degree of freedom in each. This simplification 
requires viscous dashpots, with the impedance C = cbAb, attached to the nodes so as to simulate 
long bars. The incident pulse is modelled as an external strain pulse, 
i(t), applied to the incident 
node. The contacts between the BD sample and the incident and transmitter nodes (bars) are 
modelled in a standard manner by imposing contact constraints, of form uix – uBDi,x = bi, between 
these nodes and the edge nodes of the discretized BD sample (see Figure 2).  

The equations of motion of the incident and transmitted nodes are attached to the discretized 
equations of motion of the BD sample. The contact constraints are imposed with the forward 
increment Lagrange multiplier method and the explicit modified Euler time integrator is 
employed in solving the response of the system in time [2].        

Numerical example 

The method presented above was applied in the dynamic 2D (plane stress) simulation of a BD 
specimen with dimensions L = 16 mm and D =  40.5  mm.  The  bar  lengths  of  the  SHPB  
apparatus are Li = Lt = 1.2 m and Lsb = 0.2 m (striker bar). The diameter of the bars is 22 mm. 

Fi = 2AbEb
i(t) 

Dashpots: 
C = cbAb 

P1 P2 

ui,x 

uBDi,,x 
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The initial velocity of the striker bar is 11.2 m/s. The BD sample is discretized with 4348 CST 
elements each having the maximum side length of 1 mm. The external strain pulse 
i(t) is taken 
from an experiment conducted with a rubber pulse shaper. The material properties chosen for 
the Kuru granite are: E = 60 GPa, � = 0.2,  = 2600 kg/m3, ft0 = 13 MPa, fc0 = 230 MPa, GIc = 
100 N/m2 and GIIc = 10GIc. The viscosity moduli values are set sDP =  sMR = 0.07 MPa·s. 
 

(a)  (b)      

(c)  (d)  
Figure 3. Experimental (a) and simulated (b) failure modes, tensile stress at the center of the 

specimen (c) and forces on the contact surfaces of the specimen (d). 

According to the results shown in Figure 3, the present model predicts the correct failure mode, 
i.e., the diametrical splitting in tension. The experimental dynamic forces P1 and P2 are fairly 
well matched with the simulated ones. As for the tensile strength in Figure 3c, the simulated and 
quasi-experimental curves are close to each other during loading but deviate substantially during 
unloading. The reason for this deviation is that the simulated stresses are recorded within a 
patch of six triangles at the centre of the disc while the experimental curves are calculated using 
the experimental force P1 and the quasi-static Equation (1). The maximum tensile stress of 34 
MPa is, however, closely predicted by the simulation model. As the quasi-static tensile strength 
of the Kuru granite is ~13 MPa, strong loading rate sensitivity is evidenced in the test.  
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Summary. Tensegrity structures are spatial reticulate systems in a state of self-stress. Although the
concept of tensegrity has received significant attention, the application of these structures is limited. This
paper is concerned with the effects of element loss on the stiffness and natural frequencies of Snelson-type
tensegrity booms. The effect of module length is evaluated for the constant structural length, diameter
and axial stiffness of the elements.

Key words: Snelson-type tensegrity boom, element loss, non-linear static analysis, modal analysis.

Introduction

Tensegrity structures are structures composed of tension and compression elements in equilib-
rium [1]. Tensegrity structures have several advantages: (i) they have low mass, making them
suitable for many applications, (ii) the elements could have the role of sensors, actuators or both
of them, and (iii) the non-contacting compression members make them interesting as deployable
structures. A tensegrity structure usually has a number of members depending on its application
and size. Some members critically affect the stiffness and strength of the structure. The failure
of these elements could significantly reduce the stiffness and strength and create large non-linear
vibrations. Failures could be cable rupture, strut buckling, or a faulty joint. For example, a
critical element should not be selected as sensor or actuator for control of the shape of the struc-
ture. The analysis for finding the critical elements can be seen on static and dynamic levels.
Shekastehband et al. [2] study the sensitivity analysis of tensegrity grids considering material
and geometrical non-linearity. Korkmaz et al. [3] study several damage scenarios and introduce
active control for self-repair. Ben Kahla al. [4] investigate the influence of sudden cable rupture
in a beam-like tensegrity not considering the influence of external loads.

Snelson-type tensegrity boom

Figure 1 shows a Snelson-type tensegrity boom. Having one state of self-stress and one mecha-
nism for any number of stages is the unique property of this structure. The method from [5] is
implemented for form-finding.

Analysis

A linearized dynamic model of the structure is written as:

Mü + Cu̇ + Ku = f (1)

where M,K, C, f and are mass, damping, tangent stiffness matrices, and external force vector,
respectively. ü, u̇, and u are acceleration, velocity and displacement vectors. For the non-linear

158



h

Saddle

Vertical 

Diagonal

Figure 1. Snelson-type tensegrity boom

equilibrium analysis in this study, the bar element stiffness formulation by [6] was used. A con-
sistent mass matrix formulation is used. To understand the vibration behavior, an investigation
of the first mode of natural frequency is necessary. The modal analysis is conducted by ignoring
the damping term and the vector of external force. Assuming a small harmonic motion of the
form u = ū sin(ωt), with ω as the frequency of system and ū as the amplitude vector:

Kū = ω2Mū (2)

The eigenvalue analysis of the matrix M−1K give the natural modes of the vibration.

Numerical examples

The boom structures are assumed to have following properties: truss radius R = 0.577 m,
truss length L = 20 m. Carbon Fiber Reinforced Plastic (CFRP) is selected as material for
the compressive members, because of its high strength and stiffness. The Young’s modulus,
Poisson’s ratio, and density of CFRP are E = 536 GPa, ν =0.39, and ρ = 1840 kg/m3. Zylon
with ultimate strength σu = 5.8 GPa, E = 180 GPa and ρ = 180 kg/m3 is selected for cable
elements. The radius of cables is 6.2 mm. The outer and inner radii of the struts are 29.2 and 27
mm. The stage overlap in Snelson boom is 1.93 m. Here, two cases with 10 and 5 equally spaced
number of modules are considered. The radius, axial stiffness of the elements and overlap part
(h) are the same. The structures are pre-stressed to have 50 kN force in struts.

The element removal is performed only for pre-stressed case with no external load (no self-
weight). Due to symmetry, one element of each type (diagonal cable, vertical cable, saddle cable
and strut) is removed in each module. The following conclusions can be drawn out from Tables
1 and 2:

• Normally it is expected that the elements in lower modules, close to base, have more effect
on the stiffness and natural frequencies of the structure. Tables 1 and 2 shows this idea is
not valid. For example, one can compare the effect on displacement and frequency from
rupture of diagonal cables in modules 4 and 8.
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• Most damage is inflicted by removing the saddle cables on the lower modules.

• Element removal for the case with 5 modules is less risky than element removal in the
10-module boom.

Table 1. Displacement (m) from prestressed geometry / first natural mode of frequency (Hz) for various
element removals of the boom with 10 modules. The frequency for the first mode of the boom with all
elements is 4.11 (Hz).

Modules Diagonal cables Vertical cables Saddle cables Struts
1 (bottom) 0.74 / 2.31 3.06 / 0.37 2.57 / 0.13 Collapse
2 0.63 / 2.51 0.75 / 1.11 2.71 / 0.17 Collapse
3 0.54 / 2.41 0.90 / 2.63 2.21 / 0.26 1.63 / 0.06
4 0.45 / 3.23 0.74 / 3.10 2.44 / 0.34 1.35 / 0.08
5 0.53 / 2.87 0.66 / 3.31 2.42 / 0.50 1.73 / 0.34
6 0.31 / 3.87 0.55 / 3.57 1.99 / 0.76 1.45 / 0.45
7 0.39 / 3.55 0.50 / 3.78 1.12 / 0.90 0.87 / 0.29
8 0.13 / 4.10 0.37 / 3.92 1.14 / 0.90 0.64 / 0.39
9 0.23 / 4.03 0.34 / 3.82 0.85 / 1.74 0.58 / 0.63
10 (top) 0.27 / 4.09 0.47 / 3.94 0.38 / 4.10 0.32 / 3.762

Table 2. Displacement (m) from prestressed geometry / first natural mode of frequency (Hz) for various
element removals of the boom with 5 modules. The frequency for the first mode of the boom with all
elements is 4.05 (Hz).

Modules Diagonal cables Vertical cables Saddle cables Struts
1 (bottom) 0.41 / 3.08 1.92 / 0.75 1.28 / 0.36 0.41 / 3.08
2 0.32 / 3.43 0.59 / 2.86 1.43 / 0.17 0.63 / 0.22
3 0.37 / 3.19 0.50 / 3.35 1.22 / 0.73 0.95 / 0.45
4 0.16 / 4.03 0.46 / 3.74 0.86 / 1.80 0.57 / 0.92
5 (top) 0.29 / 3.95 0.50 / 3.34 0.38 / 4.03 0.31 / 3.59

Figure 2 shows the undeformed and deformed configurations of the studied tensegrity booms.
As shown, removal of the strut and saddle cables lead to a “buckled” configuration.

Conclusions

The study in this paper was concerned with the investigation into the effects of member loss on
the structural integrity of the Snelson-type tensegrity boom in a pre-stressed state and without
the presence of the external loads. The study shows that for the same structural length, the case
with lower number of module has higher resistance against element damage. Also the structure
with higher number of modules is more sensitive to damage of saddle cables.
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SSummary. Two new solid finite elements employing the absolute nodal coordinate 
formulation are presented. This formulation leads to the constant mass matrix and the non-linear 
stiffness matrix. The discussed solid eight node brick and the tetrahedral element use 
translations of nodes and finite slopes as a set of nodal coordinates. The interpolation of the 
displacement field using incomplete cubic polynomials provides the absence of the shear 
locking effect. Several examples of numerical simulation are given 
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Introduction 

Many researchers have contributed in adapting the FEM for solving problems with large 
deformations and large overall motion. One of the approaches in this area is the floating 
reference frame formulation [1]. The local displacements of a flexible body are considered to be 
small, and large deformations cannot be simulated. The incremental finite element approach [2] 
uses infinitesimal rotation angles as nodal variables and leads to the linearized equations of 
kinematics. The rigid-body displacements cannot be described exactly. The large rotation vector 
formulation uses finite rotation angles and allows simulating an arbitrary rigid-body motion 
correctly [3]. The absolute nodal coordinate formulation (ANCF) was introduced by Shabana 
[4]. In the ANCF the elements use absolute coordinates of nodes and their spatial derivatives 
(slopes) as nodal degrees of freedom in the global reference frame. As a result, the mass matrix 
and the gravity forces vector are constant, and the centrifugal and Coriolis inertia forces vanish. 
The expressions describing the elastic forces vector can be quite very cumbersome. Many 
different finite elements employing the ANCF exist were developed [5, 6, 7, 8]. In the most of 
existing three-dimensional solid element types, only translational degrees of freedom are used. 
Using the finite slopes allows avoiding the effect of shear locking. In this paper, solid elements 
with eight and four nodes using translations of nodes and finite slopes are considered. 
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Elements formulation 

The nodal coordinates of the 3-D elements with eight and four nodes are shown in the Fig. 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. 3-D solid elements using translations of nodes and finite slopes. 

  
The position of an arbitrary point P within the element is determined by a global vector r, 

which is calculated as a product of the shape functions matrix S and the vector of nodal 
coordinates e as follows: 

The shape functions for the brick element are the generalization of the shape functions for 
the 2-D quadrilateral element [9]. For the tetrahedral element, the shape function set is based on 
the shape functions described by Bazeley [9, 10]. 

Elastic forces formulation 

The energy accumulated in the volume of the deformed element is determined by the integral: 
 

where � is a Voigt representation of the nonlinear Green-Lagrange strain tensor, E is  a  elastic  
matrix including Young’s modulus E and Poisson’s ratio �. The generalized elastic forces vector 
Q is calculated as a gradient of the strain energy U: 
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Equations of motion 

Kinetic energy of the element is calculated by differentiating equation (1) with respect to time 
as follows: 

where r�  is the velocity of an arbitrary point within the element volume,  is the density and V 
is the volume of the element. The mass matrix is defined as follows: 

The equations of motion are constructed using the  mass matrix M, nonlinear elastic nodal 
forces vector  Q and the external forces vector Qe as follows: 

Numerical simulation example 

Several test problems, such as a motion of the flexible pendulum (Fig. 2) and large deflection of 
the cantilever beam were simulated. The results of simulations were validated by comparing 
with analytical solutions and the results obtained using commercial software. 

 
Figure 2. A motion of the flexible pendulum. 
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SSummary. This text describes the basis and resulting equations of the characteristic based split 
(CBS) method in an arbitrary Lagrangian-Eulerian (ALE) framework. A new kind of 
perspective is that material can be compressible and the results are obtained in tensor form. 
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Introduction 

The characteristic based split (CBS) method is usually a finite element based method for solving 
compressible and incompressible fluid mechanics problems or e.g. viscoelastic solid mechanics 
problems. The method leads directly to an appropriate stabilizing diffusion in the streamwise 
direction, similar to the streamline upwind Petrov-Galerkin (SUPG) method, but has also the 
advantage that the LBB incompressibility restriction for pressure and velocity interpolation is 
circumvented, which means that elements do not lock. However, the CBS method is based on a 
fractional step method which is only first order accurate in time. Second order time accuracy 
can be obtained using artificial compressibility (AC) method with dual time stepping (DTS). 
One of the latest reviews of the method is in Ref. [1] and more details of the method are fully 
explained in Ref. [3]. 

An arbitrary Lagrangian-Eulerian (ALE) formulation of the CBS method is derived in Ref. 
[3] and explained also in Ref. [2]. In both cases it is used in the context of incompressible free 
surface flows. This text describes shortly a derivation of the CBS method equations in 
compressible case using tensor notation and also explains the basis of the method in continuum 
mechanics terms. Material coordinates are used instead of characteristic coordinates, because 
the material point trajectories are coincident with the characteristic curves. 
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A generic conservation equation 

Integral form of the conservation equation for a scalar variable � transported by material is: 
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where D is diffusive flux, s is source term and the time derivative is the material time derivative. 
Using the Reynolds transport theorem and the Gauss divergence theorem, the following spatial 
(Eulerian) conservation equation in the strong conservation form is obtained: 
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where v is material velocity. The first term is the spatial time derivative of � and  it  can  be  
expressed in terms of the material time derivative, denoted as �� ,  using  the  chain  rule.  As  a  
result the following Eulerian equation is obtained: 

� � s��� )div(div Dv���      (3) 

This equation is in a self-adjoint form for which the Galerkin method can be used to obtain 
numerical approximation without spurious oscillations, but there is not a direct method for 
approximating the material time derivative in an Eulerian mesh. 

An explicit characteristic Galerkin method in an updated ALE framework 

A referential domain with reference coordinate vector + is introduced. This ALE domain and 
also the material domain are chosen to be coincident with the spatial domain at every current 
instant of time 1�nt . Because of this choice, the following equations describe the relation 
between material coordinate vector X, ALE coordinate vector  + and spatial coordinate vector x: 
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Using this choice and the chain rule the referential particle velocity is obtained as follows: 
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where v̂  is defined as mesh velocity. A referential particle displacement vector ; from previous 
to current time step in the updated ALE domain is approximated using the trapezoidal rule: 
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where the following kind of notation is used: 
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Using a second order Taylor expansion about the current referential position, an approximation 
for any variable   at the previous referential position is obtained: 
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Using equation (8) to the equation (6) and ignoring second order derivative terms the following 
approximation is obtained for the referential particle displacement vector: 
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An approximation for the material time derivative of � in the updated ALE domain is obtained 
in similar way as the approximation for the referential particle displacement vector was obtained 
is equation (6): 
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The material time derivative of � is now solved from the conservation equation (3) and 
substituted to the last form of the equation (10). Approximation (8) is then used to all terms 
which refer to referential particle position at previous time step. All third order exponent terms 
of >t and also third and higher order spatial derivatives are ignored only after the substitution.  

The final step in the derivation is to approximate all the unknown terms which refer to the 
current time step n+1 by their values from the previous time step n. As a result the following 
fully explicit characteristic based approximation for the conservation equation (3) is obtained: 
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The subscripts referring to referential particle position are not needed anymore as all the terms 
refer to current position and all the domains were chosen to be instantaneously coincident. 
Equation (11) is an approximation for the self-adjoint equation (3). Galerkin method can thus be 
used to obtain numerical approximation. The last term in equation (11) is a stabilizing term 
which effectively stabilizes the spurious oscillations that could otherwise occur. 

The characteristic based split 

When the scalar variable � is density � and there is no diffusive or source terms, a stabilized 
conservation of mass equation is obtained. Convective term appears due to the mesh velocity. 
Equation (11) was derived using tensor calculus with right derivatives and divergences. 
Therefore the scalar variable �, a zero order tensor, can be directly replaced by a vector variable. 
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When the vector variable is mass flux vU �� ,  diffusive  term is  Cauchy  stress  55 and source 
term is body force �g the stabilized conservation of momentum equation is obtained.  

The  first  part  of  the  split  is  to  decompose  Cauchy  stress  5 into deviatoric part @ and 
spherical part, which defines the physical pressure p. Mass flux term in the conservation of mass 
equation and pressure term in the conservation of momentum equation are the only terms which 
are not treated explicitly. This is controlled by two dimensionless parameters  1 and  2. Then a 
fractional step method is used in which the mass flux increment is split into two parts 

*** UUU >�>�> . All the pressure terms are removed from part *U>   and included in part 
**U> . Density correction is solved between these two mass flux correction steps. Details 

including boundary conditions and time step restrictions are explained in Ref. [3]. As a result 
the following three equations are obtained which are the first three steps of the characteristic 
based split scheme: 
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Additional equations are needed to enclose the problem. For example the constitutive equation 
for Newtonian fluid, which can be compressible or incompressible, is: 

devdev 2 d�� 2��      (15) 

where μ is dynamic viscosity and devd  is the deviatoric part of the rate-of-deformation tensor 
which depends only on the velocity gradient. In the case of near incompressibility density 
increment is linearly proportional to pressure increment as follows: 

p
K

>�>
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�            (16) 

where K is bulk modulus. Otherwise an equation of state is needed. Also stabilized conservation 
equations of other variables convected by material can be easily added after the three steps. 
Depending on the nature of the problem these can be e.g. conservation of energy equation, 
turbulence equations or constitutive equation more complicated than (15). 
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Summary. Lateral vibration of rotors can be significantly reduced if damping devices are 
added to the coupling elements between the rotor and the stationary part. For this purpose a new 
semiactive damping element has been proposed. It works on the principle of squeezing two 
concentric films of classical oil and magnetorheological liquid, whose flow is sensitive on 
magnetic induction. The damping effect is controlled by the change of the electric current 
generating magnetic field. The computational simulations prove that the proposed damping 
element makes possible to extend the speed intervals, in which the rotors can be operated. 

Key words: rotors, vibration damping, new damping element, magnetorheological fluid 

Introduction 

Lateral vibration of rotors induced by imbalance forces can be reduced if damping devices 
are added to their coupling elements. To achieve their optimum performance their damping 
effect must be controllable. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Scheme of the proposed damping element.  Figure 2. The coordinate system. 
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For this purpose a new damping element has been proposed. In fact, it is a combination of a 
classical and magnetorheological squeeze film dampers (Fig.1). As resistance against the flow 
of magnetorheological fluid depends on magnetic induction, the change of the current 
generating magnetic field can be used to control the damping force. 

Mathematical model of the proposed controllable semiactive damping element 

In the developed mathematical model of the proposed damping element the classical and 
magnetorheological oils are represented by newtonian and Bingham materials and the yield 
shear stress depends on magnetic induction. Further it is assumed that parameters of the 
damping element make possible to consider it as short. The pressure distribution in the oil layers 
is governed by Reynolds equations 
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MRMRCO  denote the pressure and the pressure gradient in the axial direction in the layers 
of the classical and magnetorheological liquids, hCO, hMR are the thicknesses of the classical and 
magnetorheological oil films [1], A, AB are the dynamic and Bingham viscosities of the oils, �y is 
the yield shear stress, Z is the axial coordinate (Fig.2) and (.) denotes the first derivative with 
respect to time. As Reynolds equation (2) has multiple solutions, the seeked one, which has the 
physical meaning, must be real and must satisfy condition (3) [2] 
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In the simplest design case the outer and inner rings of the magnetorheological part of the 
damping element can be considered as a divided core of an electromagnet. Then the dependence 
of the yield shear stress on magnetic induction can be approximately expressed [3] 
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ky and ny are the material constants of the magnetorheological liquid, N is the number the coil 
turns and I is the electric current. 

In the developed mathematical model it is assumed that in the areas where the thicknesses of 
the lubricating films rises with time ( , ) a cavitation takes place. The pressure in 
these regions remains constant and equal to the pressure in the ambient space. The damping 
force is then calculated by integration of the pressure distributions pDCO, pDMR in the cavitated 
and noncavitated regions around the circumference and along the length of the damping element 
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RCO and RMR are the radii of the layers of the classical and magnetorheological oils, L is the 
damping element length and � denotes the circumferential coordinate (Fig.2). 

The equations of motion of the investigated rotor 

The investigated rotor is considered as absolutely rigid (Fig.3). It is coupled with the stationary 
part by rolling element bearings and squirrel springs. The damping layers of the new damping 
element are placed between the outer rings of the bearings and the stationary part. The rotor 
turns at constant angular speed, is loaded by its weight and is excited by the disc unbalance. The 
squirrel springs are prestressed to be eliminated their deflection caused by the rotor weight. 
 
 
 
 
 
 
 
 
 

Figure 3. Investigated rotor system. 

In the computational model the system is considered to be symmetric. Lateral vibration of 
the rotor is then governed by a set of two nonlinear equations of motion 

 � � � �oTRdyDPR temzyzyFykybym F88 ����� cos,,,22 2����� , (7) 

 � � � �oTRdzDPR temzyzyFzkzbzm F88 ����� sin,,,22 2����� . (8) 

mR is the rotor mass, bP is the external damping coefficient, kD is the squirrel spring stiffness, � 
is the angular rotation speed, eT is the eccentricity of the rotor unbalance, t is the time, �o is the 
phase shift, y, z are displacements of the rotor centre and (..) denote the second derivatives with 
respect to time. 

Results of the computer simulations 

The response characteristics referred to the case when the rotor is attenuated only by classical 
squeeze film dampers (or by the proposed damping element without being filled with the 
magnetorheological fluid) and corresponding dependences of amplitude of the force transmitted 
into the stationary part are drawn in Fig. 4 and 5. The decreasing width of the damper clearance 
(in �m in Fig. 4 and 5) rises reduction of the vibration but also considerably increases the force 
transmitted into the stationary part. Not to exceed the required maximum amplitude of the rotor 
vibration, which is 70 �m, the width of the damper gap must be 100 �m and this leads to 
amplitude of the transmitted force of 2.2 kN at the speed of rotation of 400 rad/s. Results in 
Fig. 7 are referred to the steady state vibration of the rotor if the proposed damping elements are 
applied and if the current is controlled in dependence on the speed of the rotor rotation 
according to the diagram in Fig.6. The amplitude of the vibration remains less than 70 �m and 
the maximum force amplitude does not exceed the value of 450 N. This clearly demonstrates the 
contribution of the controlled damping elements to enhanced behaviour of the rotor system. 
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Figure 4. The system response characteristic.  Figure 5. Force-rotational speed dependence. 
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Figure 6. Current controll.   Figure 7. The system vibration/force response. 

Conclusions 

Results of the computational simulations show that the damping effect of the proposed damping 
element can be controlled by the change of applied electric current. This makes possible to 
achieve the optimum compromise between reduction of the rotor vibration and magnitude of the 
force transmitted into the stationary part by changing the damping effect. 
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On non-dimensional groups for characterization of
energy absorption of tubes at constant crushing velocity
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Summary. This paper introduces non-dimensional groups that cluster results on energy absorption
of tubes crushed at constant velocity. This is part of a general work that aims to find optimal tube
dimensions that maximize energy absorption based on tube material, crushing velocity, etc.

Key words: Progressive buckling, Global buckling, Crushing of tubes.

Introduction

The energy absorption capacity of tubes is vital for a number of applications related to crash-
worthiness and blast protection. The research in collapse of structural members is extensive
and the monograph [1], which features hundreds of references, provides an excellent overview of
this field. In the present study we are looking at tubes that are crushed axially with a constant
quasi-static velocity between two rigid plattens. In most studies the non-dimensional radius
R/L, and non-dimensional wall-thickness t/2R are used for the description of tube geometry.
Here L, R, and t denote the length, radius, and wall-thickness of the tube, respectively. In this
paper it is shown that by grouping the geometry parameters, such that one of the independent
variables explicitly refers to the volume of the tube, the absorbed energy at significant nominal
strains, such that plastic buckling is observed, group nicely and general observations regarding
optimal R/L values can be made.

Modeling

A hollow circular tube of length L, radius R, and thickness t is placed between two rigid plattens,
see figure 1. The bottom rigid plate is stationary, while the top plate moves towards the bottom
plate with a velocity that is smoothly ramped up from zero to V thus crushing the tube with a
constant nominal strain rate after an initial smooth acceleration. The tube material is assumed
isotropic with moderate strain rate sensitivity and conventional J2 flow rule is used. It is assumed
that the material has enough ductility to withstand the deformations without fracture. The
material constants are representative of an aluminium alloy: initial yield stress σY = 250 MPa,
Young’s modulus E = 70 GPa, density ρ = 2700 kg/m3, and Poisson’s ratio ν = 0.27. Nominal
strain ε̄ is defined as the displacement of the top rigid plane divided by the initial length of the
tube ε̄ = Δ/L. The finite strain version of the commercially available dynamic finite element
code ABAQUS / Explicit 6.10 [3] is employed for the calculations. The tube is modeled using
4-noded quadrilateral 3D shell elements (S4R) with 7 integration points through the thickness
using reduced integration and hourglass control. The rigid plattens are modeled using discrete
rigid elements. To model welded connections between the plattens and the tube all displacements
and rotations of the bottom nodes of the tube are constrained, and the displacements in the x-y
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Figure 1. Cross-sectional views of the tube and the rigid plattens.

plane and all rotations of the top nodes of the tube are constrained This allows for movement of
the top nodes in the z-direction. The top nodes of the tube and the top rigid plate are applied a
velocity in the negative z-direction which is smoothly ramped up from zero to the final velocity
V over one tenth of the total simulation time using the ABAQUS function smooth step. Any
contact between the rigid plattens and the buckled tube walls is enforced using the contact pair
contact algorithm in ABAQUS/Explicit with standard settings, and self-contact of the tube is
obtained using the standard self-contact algorithm with standard settings. Friction is neglected.
To initiate buckling, imperfections are introduced in the form of the lowest elastic eigenmodes
of the tube, which include both global and local modes. The eigenmodes are scaled with equal
weights such that the maximum amplitude of each mode equals ξ/n, where n is the number of
eigenmodes and ξ is the scaling. In this study, a total of 25 modes shapes are used, and ξ is
taken to be L/1000 which is considered to be representative of realistic imperfections. Numerical
results indicate that the absorbed energy is a relatively weak function of the imperfections as long
as imperfections are present (ξ �= 0). The constant velocity V/(c0εY ) = 1, which is essentially
quasi-static in the sense that the total kinetic energy amounts to only a small fraction of the
total strain energy, is used in all simulations in this paper.

Figure 2. Global (left - R/L = 0.07) and progressive (right - R/L = 0.15) buckling modes at 0.4 nominal
strain. The mass of the tubes are identical and AL/L3 = 0.0134. The color range represents equivalent
plastic strain.
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Results

The simulation described above is carried out a number of times for different tube geometries.
Each simulation is stopped when the top platten has reached a position equivalent to 0.4 nomi-
nal strain (ε̄ = 0.4). At this strain level substantial plastic buckling has begun for all tubes. At
this point the energy dissipated in plastic straining Ep is evaluated.

It is well known that the tubes buckle in a global or a progressive mode depending on parameters,
see fig. 2. By grouping the geometry parameters, such that one of these explicitly refers to the
non-dimensional material volume of the tube AL/L3, the non-dimensional energy absorbed per
volume Ep/(ALσY ) collapses approximately into one curve for each AL/L3 value, see figure 3.
Here A = π((R+ t/2)2 − (R− t/2)2) denotes the cross-sectional area of the tube, such that AL
is the material volume of the tube. It is seen that for each AL/L3 value an optimum R/L ratio
exists for which the amount of dissipated energy is maximum. This optimum is closely liked to
the buckling modes. For R/L values larger than the optimum, the tubes buckle in progressive
modes, whereas for smaller R/L values the tubes buckle in global modes. The energy dissipated
by the optimum tube is significantly larger than that dissipated by tubes with much smaller or
larger R/L ratios.
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Figure 3. Energy dissipated in plastic straining at 0.4 nominal strain.
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Conclusions

It is shown that the introduced non-dimensional groups cluster results on energy absorption
satisfactory and it is shown that there for given non-dimensional material volume AL/L3 and
velocity V/(c0εY ) exists an optimum non-dimensional radius R/L that maximizes energy ab-
sorption. The optimum R/L ratio is a function of crushing velocity as well as the nominal
strain at which the dissipated energy is evaluated, hence rather detailed information regarding
the expected crushing conditions are necessary to optimize energy absorption in a practical de-
sign situation. A future paper will elaborate on how crushing velocity, conveniently expressed
in non-dimensional form V/(c0εY ), affects the dissipated energy depending on the quasi-static
buckling mode.

The results presented here are valid for constant velocity crushing. In most realistic events,
however, the tube will absorb all, or a substantial fraction, of the kinetic energy of the top
platten. This makes the crushing velocity a function of time. Therefore, future research is
aimed at including the inertia of the top platten in the analysis, and investigations of when a
constant crushing velocity assumption is valid.
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SSummary. This extended abstract presents a parametric study on trenches. The influence of 
using trenches to reduce vibration levels induced by traffic was investigated by means of the 
finite element method. A harmonic unit load was applied on a modeled road and the vibration 
levels were evaluated at different distances. The vibration levels were scaled to represent a 
realistic traffic load. An RMS-value was used to evaluate the reduction of the vibration levels 
using various parameters of the trench. 

Key words: dynamic analysis, finite element method, wave propagation, vibration isolation 

Introduction 

MAX-lab is a national laboratory operated jointly by the Swedish Research Council and Lund 
University. The present laboratory consists of three facilities (three storage rings): Max I, Max 
II, Max III and one electron pre-accelerator, Max Injector. A new facility, MAX IV, is needed 
to improve material science such as nanotechnology.  
 

 

 

 

 

 

 

 

Figure 1. 3D view of the main building of MAX IV facility. 
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Several  studies,  analytical  as  well  as  numerical,  have  been  performed  to  investigate  the  
influence of a trench as a method to reduce ground vibrations, e.g. [1-2]. This numerical 
investigation considers several soil layers in combination with a measured traffic load and the 
vibrations are evaluated at several points at the location of the facility, on top of the soil.   

MAX IV facility 

MAX IV will mainly consist of a main storage ring and a linear accelerator, Linac, that will 
provide short pulses of electrons to it. The Linac will be built as an underground tunnel next to 
the main storage ring. The MAX IV facility will be about 100 times more efficient than already 
existing synchrotron facilities, i.e. it will be the next generation synchrotron facility. The floor 
of the storage ring building will mainly be constituted of a concrete structure that is built on soil 
consisting of different clay tills and sedimentary bedrock, shale. The inner and the outer 
diameter of the main building are approximately 140 m and 220 m respectively and the height is 
12 m, see Figure 1. The facility is exposed to both to harmonic and transient loading. The 
harmonic loading is typically working machines and transient excitations are mainly traffic from 
the nearby roads and other human activities in the building such as walking. The main storage 
ring is controlled by a large number of magnets that are distributed along the ring. The main 
concern is that vibrations at the magnets will increase the vibration of the electron beam, which 
is used for measurements. Since the quality of the measurement is dependent on the precision of 
the synchrotron light, a very strict requirement regarding the vibration levels of the magnets is 
specified. The strict requirement is especially put in the vertical direction. The vibration levels 
must be less than 26 nm RMS-value during one second in the frequency span of 5-100 Hz.  

Objective and method 

MAX IV was previously analysed by the finite element method in, [3-4]. In those reports it was 
concluded from the analyses that the material parameters of the soil have a significant influence 
on the vibration levels in the facility. Therefore, changes of the soil could be an adequate 
method to minimize the vibration levels. One way is to build a trench between the highway, 
which is the main source of outdoor vibrations, and the facility. The main objective of this study 
is to investigate the effect of a trench on the traffic induced vibrations. The aim is to establish 
realistic finite element models that predict the reduction of vibrations with high accuracy. The 
vibrations were analysed by means of a dynamic finite element method, [5-6]. 

Materials 

Since the soil is exposed to loads with low magnitude the materials were modelled as linear 
elastic isotropic materials. The road is assumed to be constituted by asphalt covering a layer of 
pavement material (UGM). The soil consists of two different layers, each with a different type 
of clay till. The soil rests on the bedrock consisting of shale. Table 1 summarizes the material 
data which were determined by consultant companies involved in the MAX IV project. 
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Table 1. Material data. 

FE-model 

A model  with  the  state  of  plane  strain  was  made  to  investigate  the  influence  of  a  trench,  see  
Figure 2. The shale was modelled with a thickness of 100 m. To consider the real extension of 
the soil  as  well  as  the bedrock,  infinite  elements  were used along those boundaries.  Interfaces 
between different material layers are assumed to have full interaction. The investigation was 
made with steady-state analysis. The excitation was applied as a concentrated harmonic unit 
load positioned at the center of the road.  

 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. 2D FE-model, state of plane strain (not showing the full extension of the bedrock). 

Results and conclusions 

The displacements were scaled with a frequency dependent factor to consider the frequency 
content in the traffic load. The frequency dependent complex amplitude of the vertical 
displacements was evaluated 100, 150, 200, 250 and 300 m from the road. An RMS-value was 
calculated for every evaluation point and then the average RMS-value was used for 
comparisons. A set of geometric base parameters for the trench was determined. The base 
position of the trench was chosen to be at the middle point, between the road and the facility. 
The base depth of the trench was at the same depth as the interface between the upper and lower 
clay till layer and the base width was set to 1 m. Totally, three parameters were varied, one at 
the time. Several analyses were made to investigate the influence of a trench between the road 
and the location of the facility. In Figure 3a it is shown that an optimal position of the trench is 
30 m from the road and the worst positions are either close to the road or close to the facility. 

Material Thickness [m] MoE [MPa] Poisson’s ratio Density [kg/m3] Loss factor 

Asphalt 0.15 5000 0.25 2600 0.10 

UGM 0.5 315 0.2 2300 0.10 

Upper clay till 12 378 0.48 2125 0.10 

Lower clay till 4 1136 0.48 2125 0.10 

Shale - 8809 0.40 2600 0.04 

Road Trench Evaluation points (5) 
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a)            b) 

Figure 3. Reduction of the average RMS-value for all evaluation points.  a) Various distances 
between the road and the trench. b) Various depths of the trench.  

In  Figure  3b  it  is  shown  that  the  depth  of  the  trench  should  be  greater  than  6  m  to  show  a  
significant reduction of the vibration levels at the facility. The maximum gradient is found 
between the depths of 6 and 10 m. In the case with a trench deeper than 10 m, the waves in the 
bedrock seem to be dominating. From the calculations it was concluded that a deeper trench 
gives larger reduction of the vibration levels than a wider trench, keeping the volume constant.  

Several further investigations regarding trenches are ongoing. The influence of in-filled 
trenches will also be investigated. Known materials will be investigated as well as parametric 
studies on material parameters, such as wave-speeds and impedance. To validate the 2D FE-
model a 3D FE-model will also be analysed. 

Acknowledgements  

The Silent Spaces project, a part of the EU program Interreg IVA, is gratefully acknowledged 
for the financial support. 

References 

[1] M. Adam, O. von Estorff, Reduction of train-induced building vibrations by using 
open and filled trenches, Computers and Structures, 83(1):11-24, 2005. 

[2] L. Andersen, S.R.K. Nielsen, Reduction of ground vibrations by means of barriers 
or soil improvement along a railway track, Soil Dynamics and Earthquake 
Engineering, 25(7-10):701-716, 2005. 

[3] P. Persson, Analysis of Vibrations in High-Tech Facility, Report TVSM-5164, 
Division of Structural Mechanics, Lund University, 2010. 

[4] P. Persson, K. Persson, Analysis of Dynamic Soil-Structure Interaction at High-
Tech Facility, Proceedings of NSCM-23: the 23rd Nordic Seminar on 
Computational Mechanics, Stockholm, 2010. 

[5] N. S. Ottosen, H. Petersson, Introduction to the finite element method, Prentice 
Hall, Harlow, 1992. 

[6] A. K. Chopra, Dynamics of structures, Prentice Hall, Upper Saddle River, 1995. 

181



Proceedings of the 24th Nordic Seminar on Computational Mechanics  
J. Freund and R. Kouhia (Eds.)  
© Aalto University, 2011                                                                                                                                                 

Analysis of vibration reduction at high-tech facility 
by stabilising the soil 

Ola Flodén, Kent Persson, and Göran Sandberg 

 

Division of Structural Mechanics, Lund University, Box 118, 221 00 Lund, 
ola.floden@construction.lth.se 

SSummary.  

The new synchrotron radiation research facility MAX IV will have strict vibration tolerances in 
order to obtain good measurement precision. To satisfy the tolerances, a number of different 
design features have been investigated. One of the methods is to stabilise the soil under the 
building with cement. This paper investigates the influence of changing parameters related to 
the stabilisation by performing steady-state analyses with use of the finite element method. 

Key words: vibration analysis, finite element method, soil-structure 

Introduction 

MAX-lab is a national laboratory operated jointly by the Swedish Research Council and Lund 
University. Today, the facilities for synchrotron radiation research consist of three storage rings, 
MAX I-III, and one electron accelerator, MAX Injector. Accelerated electrons are emitted into 
the storage rings, where magnets steer the electrons along the path of the rings. When the high-
energy electrons are accelerated inside the storage rings, they emit synchrotron light which is 
used for studying materials at nanometer level. A new facility, MAX IV, will be built to 
improve the performance. The design is shown in Figure 1. For more information on the MAX-
lab facilities, see [1]. 

MAX IV facility 

MAX IV will consist of an underground linear accelerator and two storage rings with diameters 
of 30 m and 170 m respectively. The precision of the measurements will depend on the stability 
of the synchrotron light beams and this leads to demands on the vibration levels in the building. 
For the large storage ring, the vibration tolerance is set to 26 nm RMS-value during 1 s 
regarding frequencies in the range of 5-100 Hz and 260 nm for 0-100 Hz. For frequencies below 
5  Hz,  the  vibrations  can  be  compensated  by  active  systems,  which  lead  to  the  increased  
tolerance for lower frequencies. Vibrations arise from different sources, mainly from the nearby 
highway E22 and from internal excitations like walking. 
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Figure 1. Design of the MAX-IV facility. 

The MAX IV facility will be built on a location where the soil consists of two different clay 
tills above sedimentary shale bedrock. The large storage ring building will have a concrete floor 
with research stations upon it and the electron beam will be placed in a concrete tunnel. 

To reduce the vibration levels, a number of different features to the design have been 
proposed and one of them is to stabilise the underlying soil, which is accomplished by mixing 
the soil with cement. In the preliminary design, a 4 m thick stabilisation divided into two layers 
is included beneath the large storage ring. The stiffness of the stabilisation depends on the 
amount of cement. 

Objective and method 

In this investigation, the objective was to analyse how the material properties and geometry of 
the stabilised soil affect the vibration levels in the storage ring building caused by both external 
and internal loads. The analyses were carried out using the finite element method and steady-
state  analysis,  for  more  information  see  [2-3].  The  aim  was  to  establish  how  changes  in  the  
stabilised soil influence the vibration levels in a 2D-model of a cross-section of the ring. 

Material properties 

The wave-lengths in the soil and bedrock are long compared to local variations and the 
materials were therefore modelled as linear-elastic and isotropic. For more information about 
elasto-dynamic modelling of materials see [4]. The material properties and layer thicknesses are 
presented in Table 1. The data presented for the stabilised soil were used in a reference model. 
 

Table 1. Material data. 
 

Material Young’s modulus 
[MPa] 

Poisson’s 
ratio 

Density 
[kg/m3] 

Damping 
ratio 

Thickness [m] 

Shale 8000 0.3 2400 0.02 - 

Lower clay 900 0.45 2200 0.05 5 

Upper clay 300 0.48 2100 0.05 12 

Lower stab. soil  2000 0.2 2100 0.02 3.4 

Upper stab. soil 4000 0.2 2100 0.02 0.6 

Concrete 30000 0.3 2400 0.02 - 
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Figure 2. The 2D FE-model of the cross-section of the storage ring building. 

Parametric studies 

In the 2D-model of the storage ring building, see Figure 2, plane strain was assumed. The 
boundaries of the soil and bedrock were meshed with non-reflecting elements. Two different 
loads were applied to the model, one on the soil representing excitations from the highway and 
one on the concrete floor representing human walking. 

As an initial step, two different parametric studies were carried out, one study with varying 
Young’s modulus of the lower stabilisation layer and one study with varying thickness of the 
stabilised soil. RMS-values are calculated in three evaluation points on the storage ring floor 
and tunnel and the parameter studies are evaluated in terms of reduction of the RMS-values. 
Reduction levels in the vertical direction from the Young’s modulus study are shown in Figure 
3a. The reduction levels are in comparison with the reference model. 

When varying the thickness of the stabilised soil, only the lower layer thickness was altered. 
The results were evaluated in the same manner as for the Young’s modulus parameter study and 
the result is shown in Figure 3b. In this case, the reduction levels are in comparison with a 
model without the lower stabilisation layer (t = 0 m). 

 
 
 
 
 
 
 
 
 
 

 
 

a) Young’s modulus.    b) Thickness. 
 

Figure 3. Vibration reduction levels from the parametric studies. 
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Figure 4. Analysed geometries of the stabilisation cross-section. 

 
Table 2. Vibration reduction levels of the different cross-section models. 

 
Cross-section Floor-load Highway-load 

1 -0.05 0.10 

2 -0.02 0.04 

3 -0.21 0.02 

Cross-section geometry 

As expected, the parametric studies showed that the vibration levels could be reduced by 
increasing the Young’s modulus of the stabilised soil or increasing the depth, but the drawback 
of both methods is the increased use of cement. As the next step in the analysis, the possibility 
to reduce the vibrations by distributing the same material in other geometries was investigated. 
The tested cross-section geometries are shown in Figure 4 and the reduction levels compared to 
the reference model are shown in Table 2. 

Conclusions 

The geometries investigated so far have been subjectively selected. A more intelligent way 
would be to perform an optimisation with the RMS-value as objective and some variables of the 
stabilisation geometry as design variables. This, as well as testing the optimal cross-section 
geometries in a 3D-model of the storage ring building will be done in order to conclude how the 
vibration levels could be reduced by altering the cross-section geometry of the stabilised soil.  
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Summary. We study the mechanical feedback coupling between the human vocal folds and vocal tract
(VT) by simulating fundamental frequency glides over the lowest VT resonance. In the classical source–
filter theory of speech production, the vocal folds produce a signal which is filtered by the resonator,
vocal tract without any feedback. We have developed a computational model of the vocal folds and the
VT that also includes a counter pressure from the VT to the vocal folds. This coupling gives rise to new
computational observations (such as modal locking) that can be established experimentally.

Key words: Speech modelling, vocal folds model, flow induced vibrations, modal locking

Introduction

According to the classical source–filter theory of vowel production, the source (i.e., the glottis,
meaning the aperture between vocal folds) operates independently of the filter (i.e., the vocal
tract (VT)) whose resonances modulate the harmonic contents of the resulting sound, see [1, 2].
It is well known that this theory is adequate for modelling a wide range of phenomena in speech
production. However, when the vocal folds’ oscillation frequency f0 (a.k.a. the fundamental

frequency) is near the lowest VT resonance F1 (i.e., the first formant frequency), the vocal folds’
oscillations are affected by the acoustics of the VT as is observed in the computational and
experimental works [3, 4, 5]. Such phenomena appear, e.g., in soprano singers phonation.

We use the computational model developed in [6, 7] to simulate f0-glides on a steady vowel.
The model includes an additional aerodynamic load from the resonator (filter) that is fed back to
the vocal fold (source) equations of motion. In simulations we observe a strong and consistent
modal locking between vocal folds oscillations and the acoustic vibrations in the VT. This
phenomenon can also be detected in the preliminary experimental materials that we briefly
introduce in the work.

Computational model

The model consists of three subsystems: vocal folds, glottal flow, and vocal tract. Since f0–F1

crossover typically occurs in females whereas the original model parameters corresponds to male
physiology (see [7]), we have scaled the vocal fold masses by a factor of 0.253 and the stiffnesses
by 0.836, see [8]. For details, model parameters, and numerical realisation, we refer to [6, 7].

Vocal folds

The vocal fold model in Fig. 1 consists of two wedge-shaped elements with two degrees of
freedom. The distributed mass of these elements is reduced into three mass points and the
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Figure 1. The geometry of the glottis model and the symbols used.

elastic support is approximated by two springs. The equations of motion for the vocal folds are{
M1Ẅ1(t) +B1Ẇ1(t) + PK1W1(t) = −F(t),

M2Ẅ2(t) +B2Ẇ2(t) + PK2W2(t) = F(t)
(1)

where Wj = (wj1, wj2)
T are the displacements of the right and left endpoints of the jth fold, j =

1, 2. The glottal opening at the narrowest point is denoted by ΔW1. At the other end (towards
the trachea), the opening is ΔW2. These are given by (1) through

[
ΔW1

ΔW2

]
= W2 −W1 +

[
g
H0

]
.

The parameter g is the glottal opening in neutral position. The mass, damping, and stiffness
matrices are denoted by Mj , Bj , and Kj . Control parameter P is used for simulating f0-glides.

During the glottal open phase (when ΔW1(t) > 0), the load terms of (1) are given by
F = (FA,1, FA,2)

T that are given below in Eq. (3). During the glottal closed phase (when
ΔW1(t) < 0), there are no aerodynamic forces apart from the acoustic counter pressure from
the VT. Instead, there is a nonlinear spring force for the elastic collision of the vocal folds, given

by the Hertz impact model (see, e.g., [9]), F =

[
kH |ΔW1|

3/2 − H0−H1/2

2L
H1

2
h · pc

H0−H1/2

2L
H1

2
h · pc

]
.

Glottal flow

An incompressible 1D flow through the glottal opening with velocity vo is described by

v̇o(t) =
1

CinerhH1

(
psub −

Cg

ΔW1(t)3
vo(t)

)
(2)

motivated by the Hagen–Poiseuille law. The parameter psub is the subglottal pressure and h is
the width of the rectangular flow channel. The parameter Ciner regulates the flow inertia, and
Cg regulates the viscous pressure loss in the glottis.

In the glottis, the flow velocity V (x, t) is assumed to satisfy the mass conservation law
H(x, t)V (x, t) = H1vo(t) for static incompressible flow where H(x, t) = ΔW2(t) +

x
L
(ΔW1(t)−

ΔW2(t)), x ∈ [0, L] is the height of the flow channel inside the glottis. The pressure p(x, t) in
the glottis is given by the Bernoulli law p(x, t) + 1

2
ρV (x, t)2 = psub for static flow.

This pressure and the VT counter pressure pc are reduced to a force pair (FA,1, FA,2)
T where

FA,1 affects at the narrow end of the glottis (x = L) and FA,2 at the wide end (x = 0). This
reduction is carried out by using the total force and moment balance equations FA,1 + FA,2 =

h
∫ L

0
(p(x, t)− psub) dx and L · FA,1 = h

∫ L

0
x(p(x, t)− psub) dx− pc · h

H1

2

H0−H1/2

2
that yield⎧⎪⎨

⎪⎩
FA,1 = 1

2
ρv2ohL

(
−

H2

1

ΔW1(ΔW2−ΔW1)
+

H2

1

(ΔW1−ΔW2)
2 ln

(
ΔW2

ΔW1

))
− H1(H0−H1/2)

4L
hpc,

FA,2 = 1

2
ρv2ohL

(
H2

1

ΔW2(ΔW2−ΔW1)
−

H2

1

(ΔW1−ΔW2)
2 ln

(
ΔW2

ΔW1

))
+ H1(H0−H1/2)

4L
hpc.

(3)
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Vocal tract

The VT is modelled by Webster’s lossless horn equation Ψtt(s, t)−
c2

A(s)
∂
∂s

(
A(s)∂Ψ(s,t)

∂s

)
= 0

where Ψ(s, t) is a velocity potential, c is the sound velocity, s ∈ [0, LV T ] is the distance from the
glottis measured along the VT centreline, and LV T is the length of the VT. The area function
A(·) is the cross-sectional area of the VT. The sound pressure is given by p = ρΨt.

The resonator is controlled by the glottal flow velocity from (2) through the boundary con-
dition Ψs(0, t) = −vo(t). The boundary condition at lips is Ψt(LV T , t) + θcΨs(LV T , t) = 0 rep-
resenting a frequency-independent acoustic resistance. The resonator exerts a counter pressure
pc(t) = ρΨt(0, t) to (1) through (3), forming a feedback loop between the vocal folds and the VT.

Simulation and experimental results

We denote by f̃0 the nominal frequency of the vocal fold oscillations if the feedback from the
VT was removed. The actual, observed vocal fold oscillation frequency is denoted by f0.

Frequency glides are simulated by quadratically increasing the parameter P in (1) so that
f̃0 increases linearly from 350 Hz to 810 Hz during a 2 s time interval. The spectrogram of the
pressure at lips is shown in Fig. 2a with auxiliary lines showing the glide of f̃0 and F1 = 647 Hz.
It is observed that f0 coincides first with f̃0, but then it suddenly jumps upwards to F1 when it
reaches about 470 Hz. The wave form of the glottal pulse near the transition is a superposition
of two signals with frequencies f̃0 and F1. When f̃0 exceeds F1, then f0 and f̃0 coincide again.
In the downward glide, a similar behaviour occurs as presented in Fig. 2b.

In the experiments, female subjects were asked to follow a target glide: a triangle wave sweep
whose frequency grows from 170 Hz to 340 Hz linearly in logarithmic scale. In Fig. 3, a subject
produces a rising glide of vowel /i/ for which 250 Hz < F1 < 300 Hz. Here the formant value has
been measured from non-periodic phonation but it could also be obtained from the anatomy-
based resonance analysis using MRI and FEM. Subjects use auditory, tactile, and proprioceptive
feedback in controlling their phonation, and this is not modelled at all. A subject can start the
corrective pitch regulation (e.g., near the modal locking) as early as 80 ms after a deviation from
the given auditive target glide is perceived. Such corrective control actions may cause chaotic
patterns such as the subphonation episode in Fig. 3.

Conclusions

We have introduced a simple model for simulating human vowel production. This model was
used for studying the feedback effect from the vocal tract to the vocal folds in time domain
complementing [4]. Qualitatively, the computational results are well in line with experiments:
(1) in normal speech the vocal folds are not affected by the acoustics of the VT but (2) when

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4
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0.6

0.7

0.8
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1

Time (s)

F
1
 = 647 Hz

Figure 2. (a): Simulated f0-glide upwards 350–810 Hz. (b): A sketch of the modal locking in an f0-glide
over F1 first upwards and then downwards. The thick (thin) line shows f0 (resp. f̃0) during the glide.
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Figure 3. The wave form and the spectrogram (showing f0) of a rising one octave glide with static vowel
[i]. At 0.45–0.5 s a dip in amplitude coincides with a fast rise in f0. At 0.9–1.06 s, subphonation occurs.

|f0−F1| < 100 Hz, three kinds of instabilities are reported in [3]: fundamental frequency jumps,
subharmonics, and chaotic behaviour. In simulations we have observed frequency jumps (of
magnitude ≈170 Hz) at expected frequencies, and we propose that they are related to modal
locking between the vocal fold and VT oscillations.

The experimental part of the work is in progress but some preliminary results are already
available. It should be noted that the experimental results are complex: not all detected fre-
quency jumps are due to the proposed coupling mechanism. Such jumps might occur because
of register shifts, i.e., abrupt changes of the vibrating length of vocal folds. Subglottal formants
may play a role at higher frequencies, and the muscle control may not be symmetric in falling
and rising glides. Moreover, professional singers use at least following compensation mechanisms
to avoid the coupling: change in F1 by moving the tongue and pharynx configuration yet main-
taining the vowel identifiable; reduction in the subglottal pressure inducing weaker glottal flow
and hence weaker forces and weaker coupling; and a change to a more breathy phonation type.
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On the self-excited vibrations of a viscoelastically covered 
cylinder in rolling contact using FE method 

Anssi T. Karttunen and Raimo von Hertzen 

Summary. As a result of ever-increasing speeds, the self-excited vibration of polymer-covered cylinders in 
rolling contact is becoming a more serious problem in many industrial processes. The vibration is generated 
by the viscoelastic behavior of the polymer covers. In this work, this vibration phenomenon, often referred to 
as barring, is studied using a two-dimensional rolling contact finite element model. The contact between two 
cylinders is modeled as a hard contact and the kinematic contact algorithm is used. The material parameters 
of the viscoelastic polymer cover of the other cylinder span a large relaxation spectrum. Readily available 
finite element software and tools are used for modeling and computations. The results show that strong 
barring vibration is a result of a resonance condition created in the rolling contact system. The vibration 
leads to the formation of a wave-like polygonal deformation pattern on the polymer-covered cylinder. The 
finite element model can provide detailed information on various phenomena, such as the nip waves, which 
have not been detected before by simplistic models. 
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Two phase flow in complicated geometries: Modeling the
Frio data using improved computational meshes

Mika Juntunen1 and Mary F. Wheeler2

(1) Aalto University, Institute of Mathematics, P.O. Box 11100, FI-00076 Aalto, Finland, mo-
juntun@gmail.com
(2) The University of Texas at Austin, 1 University Station C0200 Austin, Texas 78712-0027,
USA, mfw@ices.utexas.edu

Summary. We study modeling two phase flow in complicated geometries. We use modern mesh gen-
eration techniques to improve the quality of the mesh and at the same time both reduce the number of
elements and capture the geometry accurately. The generated meshes consist of orthogonally optimized
general hexahedras. To model the flow in general hexahedras, we use the multipoint flux mixed finite
element method (MFMFE) developed in [3]. As a test problem we use the Frio experiment data.

Key words: two phase flow, multipoint flux mixed finite method, MFMFE, finite element method, FEM,

mesh generation

Introduction

The industry standard for modeling subsurface flow is either finite element or finite volume
method. However, the representation of subsurface data is often poorly suited for such methods.
The meshes used to represent data, such as permeability and porosity, are usually in corner point
geometry and include collapsed hexahedra and even zero volume elements. Furthermore, the
elements are often discontinuous. Yet another problem is that the meshes are often very dense,
i.e. they have much more elements than needed for sufficient accuracy of finite element method.

In this article we use an auxiliary mesh generator to create the meshes for finite element
simulations. The original data is used for acquiring the geometry, but the actual original elements
are discarded. There is a wide selection of mesh generators to choose from. We use the GridPro
mesh generator1 because it applies modern, geometry based mesh generation and the generated
meshes are optimized for flow problems. Due to an optimization strategy accurate solutions are
attained with fewer elements and the stability of the computational method is improved.

The goal of this work is to demonstrate that by using better mesh generation it is possible to
maintain fine geometrical details and at the same time improve the computational efficiency by
decreasing the number of elements. As a test problem we use the Frio site which is located on
the Gulf Coast, at South Liberty oil field, near Dayton, Texas, see [2]. There exist a substantial
amount of well documented data for this experiment and the case is particularly well suited for
our purposes due to the challenging geometry of the reservoir.

Mesh generation

The Frio data also offers a mesh for the problem. The mesh has 83×62×26 = 133796 hexahedral
elements with 32864 inactive elements, leaving 100932 active elements. The elements are given

1GridPro is developed by Program Development Company LLC, see www.gridpro.com.
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Figure 1. On the left, the original Frio geometry (100932 elements) and on the right a coarse approxima-
tion with 567 elements.

in corner point format, i.e. each element is defined by eight points in space. Since elements do
not share the nodes, there are several small discontinuities between the elements. To use this
data in finite element or finite volume simulation, the simulator needs to be able to handle the
discontinuities or the unwanted discontinuities need to be removed. Either way, one must set a
tolerance to tell which of the discontinuities are artifacts and which are real gaps.

In this work, we build a new mesh for the computational discretization with the GridPro
mesh generator. The original data mesh provides the geometry for the mesh generation but the
actual elements are discarded. This way we are able to produce even very coarse approximations
without loosing significant geometrical details, see Figure 1. Furthermore, the computational
meshes have smooth boundaries where the original data has jagged boundaries.

Numerical methods

The computational meshes used in this article consist of general hexahedra, i.e. the elements
have eight corners but none of the faces is necessarily planar. This is also true for the data
mesh so have not introduced any additional difficulties. To solve problem on general hexahedra
accurately, one cannot use traditional finite volume methods, see e.g. [3]. Instead we use the
multipoint flux mixed finite element method (MFMFE), developed in [3], that is shown to give
accurate results on general hexahedra.

To simulate the reservoir we use the Integrated Parallel Accurate Reservoir Simulator (IPARS)
developed at the University of Texas at Austin, at the Institute for Computational Sciences, at
the Center for Subsurface Modeling. It has a collection of solvers, e.g. compositional flow and
geomechanics, but in this work we only use the two-phase solver. We use the symmetric MFMFE
with IMPES and allow for iterative coupling. We also allow for several saturation steps within
one pressure step.

We will demonstrate with several numerical examples that using proper mesh generation it
is possible to improve the computational mesh which yields faster and more reliable simulations.
We will also discuss the data upscaling needed in coarser approximations.
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Simulation of a helicopter rotor flow 

Juho Ilkko, Jaakko Hoffren and Timo Siikonen 

Summary. Flowfield around the isolated main rotor of UH-60A helicopter was simulated to validate flow 
solver FINFLO for rotary wing applications. The computational model treated the four blades as rigid but 
hinged at their roots, and their dynamic movements resulting from the blade angle controls were solved 
interactively with the time-accurate flow solution that applies Reynolds-averaged Navier-Stokes equations. 
A hover case and a fast flight forward were studied with an overset grid system having around 20 million 
cells. With approximate modeling of appreciable blade elastic torsion, quite good agreement with the 
experimental and computational data taken from the literature was achieved. 
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Accuracy assessment of the Cartesian grid method for 
compressive inviscid flows using a simplified ghost point 
treatment 

M. Asif Farooq, B. Müller 

Summary. We introduce a new approach to treat ghost points near embedded boundaries to solve the 2D 
compressible Euler equations on a Cartesian grid. Solid wall boundary conditions are imposed by our new 
approach called simplified ghost point treatment for compressible inviscid flows with embedded boundaries. 
In the simplified ghost point treatment, we assume the solid boundary to lie in the middle between two grid 
points in the y-direction. Symmetry conditions are used to determine density, pressure, wall tangential, and 
wall normal velocity components at the ghost points. A cell-vertex finite volume formulation has been used 
to calculate transonic internal flows over a circular arc bump in a channel. 
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Summary. This article studies the roll damping of a bullet using computational fluid dynamics (CFD).
Three different winged modifications based on a chosen bullet geometry are studied. The base geometry
itself is also simulated to present comparison data. SST k−ω turbulence model is used and the boundary
layer is solved by wall functions, which is proved reliable by validation process. The results show that the
lengthened bullet with wings on the boat tail achieved the highest roll damping coefficients throughout
the studied Mach number region.

Key words: roll damping, limited range projectile, flow simulation

Introduction

Bullets are usually spin-stabilized meaning that the rolling motion of the bullet around its lon-
gitudinal axis keeps the flight trajectory stable. Enhancing the damping of the roll is thus an
effective way to make the bullet become unstable earlier and therefore limit its range. A bullet
with a limited range but a decent accuracy until a chosen distance could be very useful for
training use. This article studies three different winged bullet geometries with computational
fluid dynamics (CFD) to compare their roll damping coefficient. A bullet with the same base
geometry but without the wings is also studied to provide comparison data. This article is based
on the author’s master’s thesis, see ref. [1] for detailed information.

Studied bullets

The studied bullet geometries are based on the American M33 bullet, see figure 1.

Figure 1. M33 bullet [2]. All dimensions in calibers, 1 cal = 12.95 mm.
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Three different modified geometries were created. One bullet had wings on the ogive and
two had wings on the boat tail. All modified geometries are presented in figure 2.

Figure 2. The studied bullet geometries: wings on the ogive (top), wings on boat tail (middle) and
lengthened bullet with wings on boat tail and extension (bottom). All dimensions in calibers, 1 cal =
12.95 mm.

For simplicity all the pictures in figure 2 show only one wing/groove but in reality all the
bullets had four wings at intervals of 90 degrees.

Methods

Turbulence model and boundary layer solving method were validated by simulating a bullet
which had published experimental data [3] for comparison. After validation process RANS-
based SST k − ω was chosen for the turbulence model and wall functions were proved reliable
to solve the boundary layer.

Grids were created using Pointwise and had both structured and unstructured blocks. The
grids for M33, ogive-winged, boat tail-winged and lengthened boat tail-winged bullet had 2.3M,
5.5M, 2.8M and 4.0M cells respectively.

The Ansys Fluent software was used for the flow simulations. Computations were performed
on a desktop computer with a six-core Intel Xeon X5650 2.67 GHz processor and 12 GB of
RAM. Some of the simulations were also performed on the Murska cluster of the IT Center for
Science (CSC).

The bullets were studied at four supersonic Mach numbers ranging from Mach 2.7 to Mach
1.2. The rolling motion of the bullet was simulated by choosing a moving mesh-option in Fluent
and giving a spin rate around longitudinal axis as an input. The spin rates are linearly related
to the flow speed. In all simulations, the angle of attack was 0◦. The studied Mach numbers
and respective spin rates are presented in table 1.
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Table 1. The studied flow situations.

Mach Spin rate [rad/s]

1.2 -6707
1.7 -9501
2.2 -12296
2.7 -15090

Rolling moment coefficient was calculated from the simulation results. Roll damping coeffi-
cient is calculated from rolling moment coefficient by

Clp =
∂Cl

∂p̂
(1)

where p̂ is the dimensionless spin rate, defined here by

p̂ =
pd

2V
(2)

where p is the projectile spin rate, d is projectile maximum diameter and V is flow speed.

Results

Figure 3 presents roll damping coefficient for all bullets plotted as a function of Mach number.

Figure 3. The roll damping coefficient for studied bullets as a function of Mach number.
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The results show that the lengthened bullet with wings on the ogive achieved the highest roll
damping coefficient throughout the studied region. The shorter bullet with wings on the boat
tail proved to be unefficient at high Mach numbers as its roll damping coefficient is effectively
equal to that of M33. This is due to flow separation before the grooves between the wings. In
the lengthened bullet the flow attaches again further in the groove. The results of the bullet
with wings on the ogive land between those of the other studied bullets. For further information
on the results, see ref. [1].
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Electromechanics of polyurethane elastomers
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Summary. It is well known that electroactive polymers (EAP) deform under electric fields. An ad-
vantage of EAP is that it may undergo deformations much larger than those capable by electroactive
ceramics, however at comparatively low forces. As common for polymers, EAP exhibit time-dependent
material behavior, i.e. an electro-viscoelastic effect. In the modeling the deformation as well as the elec-
tric potential are introduced as global degrees of freedom, the internal variables accounting for the viscous
response are incorporated at the so-called constitutive level. The proposed model is calibrated against
experimental data, and a simple coupled finite element example is studied to show the applicability of
the finite deformation electro-viscoelastic formulation proposed.

Key words: electro-viscoelasticity, electrostriction

Introduction

Electrostriction is the term used to describe an electrically activated deformation which is pro-
portional to the square of the electric polarization in a dielectric material. In some dielectric
elastomers this effect gives rise to deformations which are noticeable also on a macroscopic scale.
A typical application utilizing dielectric elastomers is in actuators [2]. A thin film of the material
is coated on both sides with compliant electrodes and then a potential difference is applied so
that an electric field is generated through the elastomer. This will make the film contract in
the thickness direction, i.e. perpendicularly to the field, and expand in the other two directions.
The electromechanical response is in part due to the so-called Maxwell effect: opposite charges
on the two electrodes give rise to attractive Coulomb forces between them. For some elastomers,
there is additionally inherent electrostriction present, due to some electromechanical property of
the material. This is true in the case of e. g. polyurethane (PU) elastomers, where the inherent
electrostriction has been attributed to space charge impurities in the thin film samples.

In this contribution, the modeling of the inherent electromechanical behavior of PU elas-
tomers is considered. Specifically, the behavior in the lower range of electric field strengths is
studied, where the major part of the deformation of the PU has been demonstrated to be due
to other causes than the Maxwell effect. Experimental evidence in the literature suggests that
deformations of up to some 5–6% can be expected for this type of loading. A phenomenologi-
cal constitutive model allowing for large deformations is developed [1]. The material behavior
is separated into a coupled part which is essentially electroelastic, and a purely mechanical
part, where the latter is taken to be viscoelastic as the elastomeric PU exhibits time dependent
behavior during mechanical loading.
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Basic equations

Kinematics

Let ϕ(X, t) be a sufficiently smooth mapping transforming position vectors X of material parti-
cles in the reference configuration B0 to their position x = ϕ(X, t) in the current configuration
Bt at time t. The deformation gradient tensor is then given by F = ∇Xϕ. In addition, the
deformation gradient is multiplicatively split into its volumetric, i.e. defined by the Jacobian
J = det(F) and its isochoric part F = J−1/3

F. For the viscous effects as discussed later on, an
additional multiplicative decomposition is applied to the isochoric part into elastic and inelastic
or rather viscous components

F = Feα · Fvα , (1)

where det(Fvα) = 1 is assumed. The format in (1) corresponds to a generalized Maxwell model
extended to three dimensions and the large-strain regime. The parameter α denotes the number
of viscous elements.

Balance equations

For electrostatics and in the absence of magnetic fields, free currents and free electric charges,
the local referential balance equations for the electromagnetic field quantities are given by

∇X ×E = 0 and ∇X ·D = 0 . (2)

where the electric field is denoted by E and the electric displacement by D, with respect to the
reference configuration. A more careful description of the topic is found in [5], [8], see also the
discussion in [6]. As the curl of the electric field is zero, it can be derived from a scalar potential
φ as

E = −∇Xφ . (3)

At surfaces of discontinuity, including at the boundary ∂B0, the electric field and the electric
displacement must fulfill the jump conditions

N · [|D|] = 0 and N× [|E|] = 0 , (4)

where brackets [| • |] indicate a discontinuity and N is the outward unit normal of the referential
surface. For the mechanical problem, in the absence of mechanical body forces and assuming a
quasi-static setting, the referential local balance of linear momentum form reads

∇X ·T = 0 , (5)

where T is the total nominal stress tensor, which also includes the electromagnetic force contri-
bution. The boundary condition for the stress is represented by

[|T|] ·N = 0 . (6)

Constitutive model

Based on equation (1), the following Cauchy-Green-type deformation tensors are introduced

C = F
T · F , C = F

T
· F , Cvα = F

T
vα

· Fvα . (7)

The deformation tensors Cvα will be treated as internal variables accounting for the viscous
behavior. Since det(Fvα) = 1, this implies det(Cvα) = 1. It is assumed that the material
can be described by a free energy function Ω(F,E,Cvα) in terms of the deformation gradient,
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the electric field vector, and internal variables as independent quantities. By introducing an
augmented free energy function

Ω∗ = Ω−
1

2
ε0 J C

−1 : [E ⊗E ] (8)

where ε0 is the electric permittivity of vacuum, it is straightforward to derive the stress and
electric displacement as

T =
∂Ω∗

∂F
, D = −

∂Ω∗

∂E
. (9)

Furthermore, it is assumed that the free energy Ω can be split additively into volumetric, iso-
choric long-term, non-equilibrium (viscous), electromechanical and electrical contributions as

Ω(F,E,Cvα) = Ωvol(J) + Ω∞(F) +
∑
α

Ωα(F,Cvα) + Ωmel(F,E) + Ωel(E) . (10)

The specific formats used are

Ωvol(J) =
1

2
K [J − 1 ]2 , Ω∞(F) =

1

2
μ [C : I− 3 ] , (11)

where I denotes the second-order identity tensor, together with

Ωα(F,Cvα) =
1

2
βα μ [C : C−1

vα
− 3 ] , Ωmel = cmC : [E ⊗E ] , Ωel = ce I : [E⊗E ] . (12)

The viscous part, needs to be further specified as the dissipation inequality places restrictions
on the possible format of the evolution law of the internal variables given as

D =
∑
α

Mvα : [C−1
vα

· Ċvα ] ≥ 0 . where Mvα = ρ0
∂Ωα

∂C−1
vα

·C−1
vα

(13)

Above the Mandel-type quantity Mvα was introduced.
The format of the evolution law considered here resembles an approach commonly used in

plasticity theory. Introduce the potential function

Φ = [
1

2
Mdev

vα
: Mdev

vα

T
]1/2 . (14)

Superscript dev here denotes the deviatoric part of the tensor. One possible format of the
evolution law which does fulfill the dissipation inequality is then given by

Ċvα = γ̇αCvα ·
∂Φ

∂M vα

= Γ̇αCvα ·Mdev
vα

T
, (15)

where it was assumed that γ̇α = Γ̇αΦ, where Γ̇α is a constant parameter.

Numerical examples

The weak form of the balance equations is linearized and discretized by adopting standard
approaches as common for finite element applications. Since the electric field can be derived from
a scalar potential in the static case and—by analogy with the deformation gradient—includes
only first-order gradients, the discretization uses the same shape functions for the deformation
ϕ and the electric potential φ, cf. [7].

The model is calibrated against experimental data provided by [4] for the viscoelastic part
of the behavior and by [3] for the coupling coefficient cm. The coefficient ce is set to ce = 1 due
to lack of experimental data. It should be noted that its value does not affect the mechanical
response. The material parameters used in the simulation are presented in Table 1.
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Table 1. Material parameters.

Elastic Viscoelastic

μ = 1.307 MPa β1 = 0.6260, Γ̇1 = 5.385 s−1 MPa−1

Electromechanical β2 = 0.1497, Γ̇2 = 1.021 s−1 MPa−1

cm = 1.763 · 10−9 N V−2

Figure 1. Deformation of the beam type actuator. The color indicates the value of the scalar potential

A finite element (FE) implementation is done in order to perform simulations using the
established material model. A representative boundary value problem is then solved, e.g. Fig 1,
which depicts a beam structure activated by electric loading in the form of a potential difference
(potential values indicated in color). This type of structure and loading, though the example
is academical, can still be said to be representative of actual applications, giving an indication
of possible uses for material modeling of EAP from a continuum mechanics point of view in
e.g. development and testing.
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Summary. The possibility to consider Saint Venant’s torsion [1] and warping torsion [2] 
problems together is discussed. Two separate boundary value problems for two warping 
functions are first presented. The solution of these equations is arranged so that center of twist 
of the cross section can be simultaneously determined. Equations for determining the normal 
stress and shear stresses in a cross section, if the corresponding stress resultants are known, are 
presented. Finite element solution of the problem is briefly described. The applicability of the 
method is demonstrated with numerical tests.         

Key words: Saint Venant’s torsion, warping torsion, finite elements 

Assumptions 

Let us consider torsion of a straight uniform beam. The axial displacement of the beam in the 
vicinity of the cross-section under consideration is assumed to be 

                                          ( , , ) ( ) ( , ) ( , )u x y z x y z y zE F E �B BBB� � ,                      (1) 

where ( )xE  is the angle of twist, which is assumed to be locally a cubic function of the axial 
co-ordinate x . The functions ( , )y zF  and ( , )y z� , which define the distribution of the 
displacement in the cross-section, are called warping functions. Projection of the cross-section 
in the ,y z � plane is assumed to rotate around the center of twist T like a rigid plate. Thus the 
transverse displacement components of the beam are 

                             T T( , , ) ( )( ),    ( , , ) ( )( )v x y z x z z w x y z x y yE E� � � � � .                     (2) 

Conventional assumptions of the beam theory, that the transverse normal stresses y5  and z5  
vanish, are additionally made.  

Boundary value problem for the warping functions 

Using these assumptions and basic equations of linear elasticity, following boundary value 
problems 

                             
T T

T T

[ ( )] [ ( )] 0   in ,

( ) ( ) 0   on y z

G z z G y y A
y y z z

n z z n y y s
y z

F F

F F

� � � �
� � � � � �

� � � �
� �

� � � � � �
� �

                                 (3) 
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and  

                  ( ) ( ) 0   in ,    0   on y zG G E A n n s
y y z z y z

� � � �F� � � � � �
� � � � �

� � � � � �
                            (4) 

can be developed for the warping functions ( , )y zF  and  ( , )y z� , respectively. Here A  is the 
domain, s is the boundary and Ty  and Tz  are coordinates of the center of twist T.  

Solution of the warping functions and the center of twist 

Because Ty  and Tz  are unknowns, the boundary value problem (3) cannot, however, be solved 
as such. Therefore the warping function ( , )y zF  is expressed as 

                                    0 T T( , ) ( , )y z y z z y y zF F F� � � � ,         (5) 

where  0F  is constant.  By substituting this into (3) it can be seen, that the boundary value 
problem for the new function ( , )y zF  is identical to (3), but with T T 0y z� � . Unique solution 
for ( , )y zF  can be achieved, if its value at arbitrarily selected point 0 0,y z  is constrained to 
vanish.   After ( , )y zF  is known the unknown parameters 0F , Ty  and Tz  can be determined 
based on the conditions 0N � , 0yM �  and 0zM �  of pure torsion. The result is 

    0 V V2 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
,  ,  ,

( ) ( ) ( ) ( ) ( ) ( ) ( )
z z yz y yz z y y

y z yz y z yz

EI EI EI EI EI EI EI EIES
y z

EA EI EI EI EI EI EI
F F F FFF

� � � �
� � � �

� �
       (6) 

where ( )EA  is the axial stiffness, ( ) yEI , ( )zEI  and ( ) yzEI  are the bending stiffness’s and  

                      ( ) ,  ( ) ,  ( ) .y z

A A A

ES E dA EI Ey dA EI Ez dAF F FF F F� � �� � �                                      (7) 

The expressions (6) for the center of twist reduce to those of homogeneous cross-section, first 
presented by Trefftz (see Ref. [3]), by setting constantE �  and ( ) 0yzEI � .  Unique solution for 
the warping function ( , )y z�  is achieved, if its value at point 0 0,y z  is constrained to vanish.  

Stresses from stress resultants 

After the warping functions are known, the state of stress of the beam can be determined. In a 
cross-section, where the stress resultants: bi-moment B , its derivative BB , total torque xM and 
Saint Venant’s torque t xM M BB� �  are known , the normal stress and the shear stresses can be 
obtained from 

            T

T

( , ) ( , ),
( )

( , ) ( , ) ( , ) [ ( , ) ] ( , ),  
( ) ( )

( , ) ( , ) ( , ) [ ( , ) ] ( , ),
( ) ( )

x

t w t
xy xy xy

t

t w t
xz xt xz

t

EB
y z y z

EI

GM GB
y z y z y z y z z z y z

GI y EI y

GM GB
y z y z y z y z y y y z

GI z EI z

F

F

F

5 F

F �@ @ @

F �@ @ @

� �

B� �
� � G � � �

� �

B� �
� � G � � �

� �

      (8) 

where the superscripts t  and w  refer to the Saint Venant’s and the warping shear stresses, 
respectively, and 

      2
T T T T( ) [( )( ) ( )( )] ,    ( )t

A A

GI G z z z z y y y y dA EI E dA
y z F
F F F� �

� � � � � � � � � �
� �� �           (9) 
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are the torsional and the warping stiffness. The problem of determining the typical stress 
resultants ( )xM x  and ( )B x  of the beam is equivalent to that of warping torsion of thin-walled 
beams.  

Finite element equations 

The Poisson type boundary value problems for determining the functions F  and �  are easily 
discretized. Because there is only one degree of freedom per node and the stiffness matrix 
corresponding to both problems is identical, the solution if very efficient. The stress resultants 
of the beam and the warping functions of the cross-section, can be solved in advance. After they 
are known, the state of stress of any cross-section of the beam can be determined using 
equations (8). 

Example problem 

Circular arch cross-section of Fig. 1 was analyzed using biquadratic iso-parametric finite 
elements both in the thin- ( 0,1t a� ) and the thick-walled ( t a� ) cases. One layer of 20 
elements and 4 layers of 20 elements were used in the thin- and the thick-walled case, 
respectively. In the thin-walled case analytical solution based on warping torsion theory was 
used for comparison. Location of the center of twist T was first determined. In the thin-walled 
case the analytical and numerical result were T 1,623z a�  and T 1,618z a� , respectively, and in 
the thick-walled case the numerical result was T 1,246z a� . Fig. 2 shows the distribution of (a) 
normal stress x5 and (b) warping tangential shear stress w

x @  as function angle � (see Fig. 1) 
obtained in the thin-walled case. The finite element results practically coincide with the 
analytical ones. Fig. 3 demonstrates distribution of (a) Saint Venant’s shear stress t

x @  and (b) 
warping shear stress w

x @  obtained in the thick-walled case.      
 
 

 

 

 

 
 

 
Figure 1. Circular arch cross section (a) thin 0,1t a� and (b) thick t a�  

Conclusions 

The more or less intuitive solution approach presented above needs further substantiation. 
However numerical tests performed this far show that this strategy works both in connection 
with thin- and thick-walled cross-sections. 
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Figure 2. Comparison of numerical and analytical results for (a) normal stress x5 and (b) 

warping shear stress w
x @ ; thin cross-section 0,1t a� . 

 

 
 
 
 
 
 
 
 
 

 

Figure 3. (a) Saint Venant’s and (b) warping shear stresses; thick cross-section t a� . 
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Summary. A new system of identification of finite elements is proposed, the digital 
nomenclature code dncm. The topological and kinematic structure of an arbitrary finite element 
is represented by a multidigit code that reflects the topological structure of the element. The 
code of an element is based on dimension d, the number of nodes n, the number of scalar 
coordinates per node c, and a multiplier m. The introduced classification procedure enables 
description of previously undefined finite elements. The code allows for a systematic 
enumeration of finite elements and reflects interrelations and transformations between them. A 
universal procedure can be proposed to construct the geometrical and structural matrices of a 
finite element by its code dncm. 

Key words: finite element analysis, nomenclature 

Introduction 

There are wide varieties of finite elements that have been developed in different physical areas 
such as structural analysis, fluid mechanics, electromagnetism, and coupled-field elements. This 
development work has been conducted by a large number of researchers, many working in FEA 
code development within the commercial sector. Given this commercial emphasis for much of 
the development, it is understandable that a conventional system of identification or numeration 
of finite elements does not exist. Because of this missing system of identification, authors 
usually describe finite elements in their papers with definitions such as ‘constant-strain 
triangle’, or ‘drilling triangle’. This approach is acceptable if a single element or a few of them 
are discussed. However, if one needs to deal with many elements simultaneously and to describe 
their common features or interrelationships, the need for a short element designation becomes 
obvious. 

Finite-element notations that have been employed in literature are as follows: 
– by abbreviations, e.g. CFT, CST, LST, DKT, DKQ, BEAM189 etc.; this notation lacks 

information about nodes or coordinates to allow for reconstruction of the element; 
– by number of nodes, e.g. quadrilaterals Q4, Q6, Q8, Q9, bricks B8, B20; the 

disadvantage of this approach is that there is no information about kinematics and nodal 
coordinates; 

– by number of degrees of freedom, e.g. B4, B8, B12, B16 (beams), ANCF-B30, ANCF-
B48; the problem here is that different elements can have exactly the same number of d.o.f. 
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In a recent research [1], a new classification called digital nomenclature code in the form 
dnc has been proposed for a systematic classification of conventional elements: d is the 
dimension; n is the number of nodes, and c is the number of coordinates (derivatives) per node. 
Further, it has been found that the kinematics of a great number of widely used elements are 
described in the form dncm. 

The introduced nomenclature code allows for developing kinematic descriptions of new 
finite elements in a straightforward manner. This can be accomplished, in practise, with the help 
of a transformation procedure. In the transformation, some of the features from an original 
element are preserved. 

Geometry and kinematics of basic dnc elements 

A three-digit nomenclature dnc of a wide variety of finite elements is proposed using the 
following integer digits: 

d is the (inner) dimension of the elements, it is equal to the number of arguments of the 
interpolation polynomial Zdnc(x, ...); e.g. value 1 is associated with beams, 2 with plates etc.; 

n is the number of nodes of the element; 
c is the number of coordinates per node meant as the number of derivatives of the field 

variable Z starting with zeroth derivative: Z, Zx�
� , ...  

Figures 1, 2, and 3 represent some of the commonly used simple finite elements in one-, 
two-, and three-dimensional cases. 

Product n by c equals to the total number of degrees of freedom of element dnc: cnD .�  
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Figure 1. Basic 1D elements 1nc and their interpolation polynomials. 
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Figure 2. Basic 2D elements 2nc with Pascal triangle of polynomial terms and its matrix form 
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Figure 3. Matrix representation of Pascal pyramid of polynomial terms of solid elements 3nc 

 
The interpolation polynomial for an arbitrary case can be represented as follows: 
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Symbols  used as exponential coefficients are presented in figures 1 to 3. For 
example, . 

dj
Dk*

1�k11 �Dk*
The values of undefined constants ak can be obtained from a linear system of equations 

when one evaluates Zdnc and its proper derivatives at each node of the element: 
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Components Wlk of the Wro�ski-type matrix W are defined in Eq. (2), where indices i, j 

and l are defined as follows for different groups of nodes: ni ,,1 �� ; ; 
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(3)

with the row matrix of shape functions s2nc and the column matrix of nodal coordinates z. 

Modified code dncm for multiple fields, other extensions and conclusion 

Simple three-digit nomenclature dnc for basic single-polynomial elements can be extended to 
multiple-field elements dncm using the fourth multiplier m, which represents the number of 
fields that are interpolated the same way. This allows enumerating a waste majority of existing 
finite elements by simple notation dncm, which is not descriptive only but is constructive, too: 
by changing digits d, n, c, and m, it is possible to find new elements not mentioned in literature 
before [1]. 

More complicated elements possess a set of nodal coordinates X that formally correspond 
to some code dncm; however, their kinematics require that an auxiliary element (d���) to be 
created using different topology � and kinematics �, � with a different set of nodal coordinates 
X
�

. Then, a transformation T towards coordinates X leads to an element systematically denoted 
by code dncm(d���) )}({ XTX �

�
, which is proposed in paper [2] and called the extended digital 

nomenclature code. Examples of such elements are planar triangles and rectangles with drilling 
degrees of freedom, quadrilaterals with extra shape functions, discrete Kirchhoff triangles and 
other elements, including rigid bodies. 
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Summary. This article presents a prospective method for in-vivo bone density estimation. 
Specially designed test bench allows measuring vibration response induced by impact impulse 
of force. Modal response of the bone is normalized with respect to total body mass to account 
for bone size. Finally output from the normalized modal response is correlated with bone 
mineral density measured by DXA. Resulting relationship can be used to classify subjects to 
two categories: high and low bone density with success rate at the level of 63%.  

Key words: experiment, classification, mineral density, osteoporosis 

Introduction 

Bones fulfill important weight bearing function in human body. They create mechanical chains 
actuated by muscles which enable locomotion. External load applied to bones stimulates bone 
growth Ref. [1], and thus strengthening. Despite the fact, that human move each day, the 
amount of physical activity might be still insufficient to stimulate bone growth. At that stage the 
bone starts the resorption process, which in long run can lead to osteoporosis. The main problem 
with osteoporosis is that it is a silent disease, there are no visible symptoms and usually it is 
discovered when a bone fracture occurs. In many cases the disease is then at advanced stage and 
not many methods can be used to slow down its progress. For example, the number of hip 
fractures in Finnish people aged 50 or more increased more than three times from times between 
1970 to and 1997 Ref. [2]. For that reasons prevention is of a key importance. Nowadays 
methods used to evaluate bone density are relatively expensive, and are based on ionizing 
radiation, what limits their usage. This inspired the authors to think of an inexpensive and 
radiation free method, which would allow determining bone condition. This preliminary study 
shows an idea of using vibration analysis in bone density estimation. 
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MMethods 

Modal frequencies Ref. [3] are associated directly with mass distribution, density and elasticity 
of the measured bone, and these parameters describe bone rigidity. Because of the fact that 
bones in living humans are covered with soft tissues that have damping properties the effect of 
soft tissue needs to be studied Ref. [4] as well. Previous research on the subject showed 
correlation between bone mineral density and natural frequencies Ref. [4]. According to the 
researchers, the bone natural frequency increases with the increase of the bone mineral density. 
Vibration analysis in the referred study was performed using modal hammer. That setup does 
not allow applying precise force impulse. In addition, the accelerometers were held by hand 
introducing additional noise to the measurement. In the new setup that was created during the 
current project, vibration generator with force sensor is used, which guarantees precise impulse 
force generation. Two force sensors are uses in order to allow for detecting any measurements 
errors. Both sensors are attached by elastic straps to provide good contact with the bone, remove 
any extra noise, and constrain the range of force used to press the sensors against bone. 
Moreover, boundary conditions are chosen to reduce the muscle damping effect, as leg is 
suspended in the air supported just under ankle and knee. The improvements in the proposed 
project yield much more accurate vibration measurements with high repeatability. The devise is 
depicted in figure 1.

Figure 1 Equipment for measuring the natural frequencies of tibia. 

The whole process of measurement of tibia vibrations takes approximately 5 minutes. The 
subject is equipped with accelerometers attached by elastic straps and sited with his leg placed 
on two adjustable supports. Then the vibration generator support is adjusted to place the tip over 
the tibia. The system allows regulating the initial pressure between the generator’s tip and the 
leg. The localization of the impact place is chosen over the most visible surface of tibia in the 
middle of its length. In principle, only one accelerometer is needed to perform a measurement, 
the usage of two sensors allows for validation of the accelerometers contact with the bone.

The measurement requires four successive impulse hits with the force of 40N as excitation, 
to measure bone vibration response. Those four measurements are combined into one averaged 
response. A sample response is shown in figure 2. None of the subjects reported the experiment 
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as unpleasant. As it can be seen from figure 2, peak locations from sensors mounted on one leg 
compared with sensor responses from the other leg are in good correlation. The trial was 
performed on 20 postmenopausal women, who gave their informed consent to the experiment. 
Bone density of the subjects was first measured with standard DXA equipment for reference 
with the new method. 

Figure 2 Bone response measured on both tibias of a single subject using two sensors on each of 
the legs. 

Anthropometric parameters: weight, height and tibia length of each of the participants were 
collected. Natural frequencies of a body depend on total mass, dimensions and mass 
distribution. It was thus concluded that frequency response as such do not give absolute 
information about bone density, and two other parameters have to be normalized. For simplicity 
authors have assumed that mass distribution within a bone is uniform and that bone size is 
proportional to the body size. The most significant deformation mode is bending in the saggital 
plane, as indicated in Ref. [5]. It is also the first deformation mode, thus the first modal 
frequency is considered as the representative. Normalization with respect to mass, height, length 
of tibia and body mass index, which is defined as: 

(1)

Where m is the mass of the subject in kg, and h is the height of the subject in meters. 

RResults and conclusions 

From the set of 21 measurements, one had to be rejected due to the difficulty in unambiguous 
determination of the first modal frequency. Remaining 19 measurements were correct and were 
used in analysis. Correlation between first modal frequency with respect to bone density 
measured by DXA was low (R2=0,025). Normalizing the frequency with respect to body mass 
index, length of tibia, and height improved the result giving: R2=0,115; R2=0,071; R2=0,029 
respectively. The best result was however obtained after normalization with respect to the total 
body mass (R2=0,121). Using the relationship between normalized first natural frequency with 
respect to total body mass and bone mineral density, classification into two categories was 
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performed. The classification succeeded in 12 out of 19 cases which gives success rate of about 
63%.  

At the current state the method allows only to classify the subjects to those of high and low 
bone mass. It is expected that in future better normalization method can be found allowing for 
regression rather than simple classification of the density-natural frequency response. 
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SSummary. Inverse dynamics simulation is a convenient approach often used in robotics and 
mechatronic systems for feed-forward control to reproduce a desired output trajectory of a 
nonlinear multibody system. Usually the engineering systems are completely actuated or 
underactuated, respectively, for economical reasons. In contrary, the musculoskeletal multibody 
systems found in biomechanics are highly overactuated due to the many muscles, and they show 
switching number of closed kinematical loops. The method of inverse dynamics is extended to 
overactuated systems by parameter optimization, and simulation results of human walking are 
presented.  

Key words: Inverse dynamics, parameter optimization, human walking dynamics. 

Introduction 

Parameter optimization techniques have been frequently used for motion synthesis of biped 
robots [4]. These techniques have been proven to be powerful in two-dimensional human 
walking simulation as shown by Ackermann [1]. The basics of this approach are the 
parameterization of the muscle forces and generalized coordinates and the search for their 
optimal values by minimizing a cost function that includes an energy expenditure estimation 
and a measure of deviation from normal walking patterns. The method is very much based on 
inverse dynamics since at each iteration of the optimization algorithm an inverse dynamic 
problem is solved by using the motion reconstructed from the optimization parameters. The 
main advantage of this approach is the complete elimination of the forward integrations of the 
equations of motion, what significantly reduces the computational cost of simulation. 

Multibody model 

The human body model used is a three-dimensional rigid multibody system actuated by 
muscles. The equations of motion of the system are obtained by using the multibody software 
Neweul-M2 [5], which generates the equations of motion in symbolic form for efficiently 
analyzing, simulating and optimizing multibody systems. The skeleton is first considered as an 
open kinematic chain built from rigid bodies that are connected by holonomic joints and 
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described by a  set  of  nc generalized coordinates. Thus, the equations of motion are written in 
terms of the generalized coordinates by virtue of the d’Alembert’s principle [7] as 

 
where )(qM  is  the  mass  matrix  of  the  system,  q , q� and q��  are the position, velocity and 
acceleration vectors, respectively, � �qqk �,  is a vector describing the generalized Coriolis forces, 

� �qqq �,r  is a vector including generalized gravitational forces, passive generalized moments at 
the joints due to tissues interacting with the joints according to the model of Riener and Edrich 
[6] and generalized viscous damping torques at the knees and hips according to the model of 
Stein et al. [8] and mfAB  is a vector that includes the generalized forces exerted by the muscles 
actuating the model.  

 

Figure 1. Simplified multibody model for human walking simulation. 

The three-dimensional model of the human body used in this research is composed of 7 rigid 
bodies, two thighs, two shanks, two feet, and a body called HAT representing the pelvis, trunk, 
arms and head, which are connected by holonomic joints, see figure 1. The thighs are connected 
at the hips to the HAT by spherical joints, the shanks and thighs are connected by revolute joints 
representing the knees and the foot and shanks are connected by revolute joints representing the 
ankles. This is a simplification of other three-dimensional models that can be found in Anderson 
and Pandy [2, 3]. However, this simplification allows the derivation by software Neweul-M2 [5] 
of the equations of motion of the 7 bodies tree without any constraint. 

The kinematic chain in Figure 1 is described by the following vector of 16 generalized 
coordinates 

 

 � � � � � � m
r fABqqqqqkqqM ��� ���� ,, , (1)

T
IIIIII zyx ][ 78671616164534131313111111 00J0*00J0*J0*�q , (2)
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where the subscript I refers to the inertial frame, subscript 1 refers to body HAT, subscripts 3 
and 6 refer to right and left thighs, respectively, subscripts 4 and 7 refer to right and left shanks, 
respectively, and subscripts 5 and 8 refer to right and left feet, respectively. When a subscript is 
written as ij it means a relative motion of body j with respect to body i. It shall be noted here 
that Neweul-M2 is programmed based on the most common sequence of rotation 123, while in 
Biomechanics the sequence 213 is usually considered anatomically meaningful, Zatsiorsky [9]. 
Once the kinematic chain representing the skeleton is described, the contact of this chain with 
the ground is added through unilateral constraints. Due to the use of an optimization framework 
it is possible to constrain the normal contact forces to be only positive. Then, the contact can be 
modelled using simple bilateral constraints. Therefore, the contact forces can be easily added to 
the model by using a vector of Lagrange multipliers as  

 
where         is the vector of Lagrange multipliers at phase ph of the motion.  

Optimization framework 

The simulation of human walking motion is treated as a large parameter optimization problem. 
The design variables are used to reconstruct the muscle force histories and the generalized 
coordinate histories of a walking cycle as well. Such a set of parameters are found by 
minimizing a cost function which is evaluated based on energetic and aesthetic reasons. Finally, 
the motion and muscle forces time histories reconstructed from the optimization parameters are 
asked to fulfill many constraints. The constraints of the constrained optimization problem 
ensure the fulfillment of the equations of motion of the multibody system, the kinematic 
constraints as well as other physical and physiological relations. 

The complete set of design variables are summarized in vector �  which includes: 
1. A vector iq , i = 1, 2, ...nc, containing nodal values of the generalized coordinates. 
2. A vector m

jf , j = 1, 2, ...Nm, containing nodal values of the different muscle forces.  
3. A vector representing the durations of the eight phases of a walking cycle tph. 
4. A geometrical parameters vector describing the kinematic constraints of the feet on 

the ground pg. 
According to the previous explanation, the vector of design variables can be written as: 

 
where indices i, j and ph are  running  from  1  to  nc, Nm and 8, respectively, and g is  just  a  
subscript meaning that parameters in gp are geometrical. In the three-dimensional model 
presented before the number of coordinates nc is equal to 16 while the number of muscles Nm is 
equal to 28. 

Numerical results 

This section shows some numerical results of the simulations carried out using the optimization 
framework presented. A symmetrical motion occurring in the sagittal plane has been analyzed to 
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check the performance of the approach and the convergence of the model for different 
parameterizations. The symmetry of the model allows a big simplification in the number of 
optimization variables. In fact, it is assumed that the left leg experiences in the second half of 
the walking cycle the same motion as the right leg in the first half. In addition, the motion of the 
pelvis is assumed to be the same in both halves of the cycle.  

Table 1 shows the results of several models that differ one to another in the number of nodes 
used to parameterize the generalized coordinates and muscle forces. The convergence of the 
different models to a unique solution is remarkable.  

 
Table 1: Performance of the different models (NN stands  for  number  of  nodes,  f is  the  cost  
function, Et is the metabolical cost of transportation, Jdev is the measure of deviation from 
normal walking patterns and CT stands for computation time). * Estimated CT values. 

 
NN f Et [J/m] Jdev CT [hours] 

 

19 13.33 626.00 7.07 0.55 
21 7.54 415.73 3.38 1.85 
23 6.52 351.01 3.01 2.87 
25 5.50 310.62 2.39 3.25 
27 4.99 283.28 2.16 5.65* 
29 4.62 254.22 2.08 8.66 
31 4.45 246.32 1.99 9.52 
33 4.37 238.57 1.98 13.17 
35 4.31 236.10 1.95 16.16* 

 

Acknowledgement 

This research was supported in part by the Spanish Ministry of Science and Innovation through 
the project TRA2010-16715. This support is gratefully acknowledged. 

References 

[1] Ackermann, M. Dynamics and energetics of walking with prostheses. PhD thesis, Institut für 
Technische und Numerische Mechanik, Stuttgart, 2007. 
[2] Anderson, F., and Pandy, M. A dynamic optimization solution for vertical jumping in three 
dimensions. Computer Methods in Biomechanics and Biomedical Engineering 2 (1999), 201–
231. 
[3] Anderson, F., and Pandy, M. Dynamic optimization of human walking. Journal of 
Biomechanical Engineering 123 (2001), 381–390. 
[4] Bessonnet, G., Seguin, P., and Sardain, P. A parametric optimization approach to walking 
pattern synthesis. The International Journal of Robotics Research 24, 7 (2005), 523–536. 
[5]  Kurz,  T.,  Eberhard,  P.,  Henninger,  C.,  and  Schiehlen,  W.  From  Neweul  to  Neweul-M2: 
Symbolical equations of motion for multibody system analysis and synthesis. Multibody System 
Dynamics 24, 1 (2010). 
[6] Riener, R., and Edrich, T. Identification of passive elastic joint moments in the lower 
extremities. Journal of Biomechanics 32 (1999), 539–544. 
[7] Schiehlen, W. Multibody system dynamics: Roots and perspectives. Multibody System 
Dynamics 1 (1997), 149–188. 

219



[8] Stein, R., Zehr, E., Lebiedowska, M., Popovic, D., Scheiner, A., and Chizeck, H. Estimating 
mechanical parameters of leg segments in individuals with and without physical disabilities. 
IEEE Transactions on Rehabilitation Engineering 4, 3 (1996), 201–211. 
[9] Zatsiorsky, V. Kinematics of Human Motion. Human Kinetics, 1998. 

220



Proceedings of the 24th Nordic Seminar on Computational Mechanics  
J. Freund and R. Kouhia (Eds.) 
© Aalto University, 2011                                                                                                                                                

Collapse simulations of flexible multibody systems 

Jari Mäkinen  

 

Tampere University of Technology, Mechanics and Design,  
P.O. Box 589, 33101 Tampere, jari.m.makinen@tut.fi 

Summary. A procedure for modelling the dynamic collapse of flexible multibody systems 
using a non-linear finite element method is presented. The flexible multibody system is 
assembled by Reissner’s geometrically exact beam elements. The primary interest is to model 
and simulate hydraulic-driven multibody systems under oversized load causing a failure.  

Key words: stress resultant theory, geometrically exact beam, plasticity, return mapping 

Introduction 

In this paper, the flexible multibody system is assembled by Reissner’s geometrically exact 
beam elements [1]. Our aim is to model and simulate hydraulic-driven multibody systems under 
oversized load causing a failure. These collapse simulations can be utilized in the accident 
analyses or the detection of the device in the extreme conditions that could advise in design. The 
hydraulic system, and especially hydraulic cylinder, is modelled by a length controlled bar 
element [2]. In order to model the failure, an elasto-plastic material model is required. 

Since plastic material model should be robust to utilize the material model in simulations, 
a stress resultant formulation is introduced. In the spatial case, the Reissner’s beam element has 
six stress resultants: normal and two shear force vectors and three bending moments. The stress 
resultant formulation avoids the through-thickness integration. However, the yield surface 
depends on the shape of the cross-section. In this paper, the study is restricted to rectangular 
hollow cross-sections and a stress resultant formulation for elasto-plastic material is introduced.  

Return mapping algorithm 

For yield condition in the stress resultant formulation we choose simply 
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where pN  is the fully plastic normal force and pM  is the fully plastic bending moment. The 
stress resultants and corresponding strains for Reissner’s spatial beam are [1] 

221



  : , :
& # &

� �$ ! $
% " %R R

N
E

M
#
!
"

3
K

L
 (2) 

The return mapping algorithm reads in this case  

  

� �

1

p p p p
1 1

p
1 NM 1 1

1 1

, :

: ( ) 0

n n

n n n n

n n n

n n

f

f f

�

� �

� � �

� �

� �
�

� � � � �
�

� �

� M

E E E

E E E E r r

C E E

K
K

K

>

> /
 (3) 

where NM  is the elasticity matrix of the cross-section, and C /  is the plasticity parameter in the 
flow rule. The elastic trail in the return mapping algorithm reads 
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So, in order to solve the residual equations 
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In addition, the algorithmic tangential modulus reads 
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The governing equations of motion in the dynamic case are solved by using the implicit 

Newmark time integration method. A numerical example considering the hydro-mechanical 
flexible multibody system is presented where a heavy load with sudden stop of hydraulic 
cylinder causes the collapse of the system. In this example, dynamic effects in the limit load are 
evident. 
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SSummary. Several works have investigated the use of NiTi wire for flexor tendon repair. The 
material has been shown to have several advantages compared with commonly used suture 
materials. However, it has also some drawbacks. This study investigates the torsional 
instabilities of thin martensitic and austenitic wire. Commonly used suture material braided 
polyester (4-0 Ethibond®) is used as a control material. 
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Introduction 

Nickel-titanium (NiTi) wire has been proposed as an alternative material for flexor tendon core 
suture. Several papers have studied its suitability in flexor tendon repair [1], [2]. The NiTi 
circumferential repairs showed superior stiffness, gap resistance and load to failure when 
compared to polypropylene repairs. 

The NiTi wire has several properties that show potential if it is used as a suture material. 
The wire is easy to handle, strong and biocompatible, but it also has some drawbacks. In 
particular, martensitic NiTi wire shows kinking behaviour, which reduces repair speed and 
ultimately leads to fracture of suture during flexor tendon repair. The purpose of this study was 
to evaluate the material behaviour of 100 �m austenitic and martensitic NiTi wire, which is used 
in flexor tendon repair. Part of this study is reported in ref [6], which involves measurements of 
tensile, creep, bending and knotting properties. The main focus of this report is on 
measurements of torsional instabilities. The study attempted to find an evaluation method for 
kink formation in different suture materials. Commonly used suture material braided polyester 
(4-0 Ethibond®) was used as a control material. 

Kink formation 

The physical background of kink formation in wire relates to the phenomenon of torsional 
instability, which involves large displacements (see Figure 1). If the wire (rod) is compressed, it 
loses stability by buckling. The complete loop is gained when the one end of the wire reaches 
the other end. If the wire is twisted before giving slack, the loop forms earlier when a section of 
it flips into a loop. This depends on what value of tension is enough to keep the system in trivial 
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equilibrium. Snarling may occur after loop formation if more slack is given for the wire (see 
Figure 1c). Failure to properly remove the loop or snarl can result in permanent deformation, 
which is known as a kink. A more detailed description of the phenomenon can be found in the 
references [4] and [5]. 

 
Figures 1a, 1b and 1c. Formation of instability phenomenon in wire. 

 
A different kind of criteria for loop forming is presented in [4]. If the wire is subjected under 

pure torsion, following equations (1)–(3) represents the criteria for loop forming. The first 
equation was derived by Ross, the second by Coyne and the final equation by Yabuta.  
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where L is the initial length of wires, n is the number of turns applied to the wire, and N=GIp/EI 
is the ratio between torsional GIp and bending stiffness EI. 

Measurements and results 

The bending stiffness of the suture is measured and reported in the reference [6], and some of 
the results are shown in Table 1. The torsional stiffness of the suture was measured using a 
torsional pendulum [3]. Five different measurements were made for one sample material. The 
effect  of  the  length  of  sample  and  the  effect  of  the  mass  of  weight  was  studied.  Five  periods  
were measured from the pendulum and the mean value and standard deviation was calculated. 
The equation for torsional stiffness of the suture is expressed in equation (4). Table 1 presents 
the results. The initiation of loop formation for each suture material can be estimated using 
criteria (1)–(3) (see Figure 2).  
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where T is periodic time, J is the moment of inertia and L is the length of the suture.  
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Table 1. Mean and standard deviation values for torsional and bending stiffness of sutures.  
Suture material  GIP [Nm2] EI [Nm2]  

  Mean Std Mean Std  

Austenitic NiTi  7.93E-07 3.24E-08 3.29E-09 4.80E-10  

Martensitic NiTi  1.39E-06 8.08E-08 1.13E-09 1.43E-09  

4-0 Ethibond  1.79E-07 2.25E-08 2.27E-10 2.62E-10  

 
Figure 2. The loop formation of suture materials. 

 
In the measurement of loop formation, the upper end of the suture was fastened to the 

tensile testing machine and the lower end of the suture was fastened to the drill chuck. The 
tensile  test  machine  was  used  to  ensure  tensionless  sample  and  to  measure  the  slack  of  the  
sample. Twist was introduced to the suture by turning the chuck one revolution steps (n). In 
every turn, the slack needed to induce the loop was measured. If the equilibrium state of the 
sample snapped to another one, the slack (B/L) was measured. The measurements were made 
using three different lengths of the sample: 70, 100 and 155 mm. The austenitic and matensitic 
NiTi sutures were turned 1–5 revolutions clockwise and counter-clockwise. The Ethibond suture 
was turned 3–10 revolutions respectively. Figure 3 shows the results for different suture 
materials. 

Discussion 

According to Figure 3, austenitic NiTi suture resists loop formation at the beginning more than 
martensitic NiTi in a small number of turns. When the number of turns increased, the results of 
austenitic NiTi collapsed to the level of martensitic NiTi and it started to snarl. The formation of 
the loops in the martensitic NiTi required the smallest amount of slack and those loops easily 
caused kinks. The biggest difference between NiTi sutures and the control material was that 
clear loop formation started after one turn in NiTi sutures, but four turns were required with 
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Ethibond. When the length of sample was increased, more turns were needed before there was a 
clear formation of the loop. 

The criteria did not predict the phenomenon accurately because all of the used criteria 
clearly over-estimated the loop formation. Yabuta’s criterion yielded the best results, although 
the results of criterion differed by at least one decade compared to the measurements. So, the 
estimation method for the loop and kink formation of different suture materials has not yet been 
found. 

 
Figure 3. The loop formation of suture materials. 
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Crack propagation in rails under RCF loading conditions
based on material forces
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Summary. In this paper, numerical simulations of crack growth in rails are presented. More specifically,
this paper focus on short surface (head-check like) cracks that are often observed at the rail gauge corner.
A fatigue propagation law expressed in terms of a crack driving force, derived from the concept of material
forces, is presented. This model has been used for parametric studies of crack propagation, investigating
key parameters such as loading and crack geometry. The results obtained together with additional
investigations suggest that anisotropic effects should be included in order to simulate head-check growth
in rails more accurately.

Key words: Material forces, RCF, crack propagation, head checks

Introduction

Rolling Contact Fatigue (RCF) of rails and wheels is a major problem in the railway industry
worldwide. More specifically, RCF is currently one of the largest factors affecting the maintain-
ability and operational safety of the track [1]. Furthermore, maintenance associated with rail
deterioration (inspections, repairs, grinding) are very costly and time consuming for infrastruc-
ture holders [2]. Having accurate and efficient tools for life prediction of rails is, therefore, a
pre-requisite for optimizing maintenance and (re)investments and also for modifying operational
conditions to decrease deterioration and costs.

RCF damage observable in rails include several defects such as tounge lipping, head checks,
squats, pitting and spalling, see for example [2] for an overview. Although there are many
different kinds of rail defects, the studies in this paper are limited to head check-like cracks and
in particular the numerical simulation of their growth.

In this paper a 2D crack propagation model is formulated in terms of a crack driving force
based on the concept of material forces [3]. Based on the propagation law, the growth of a single
head check-like crack in a piece of rail, under realistic RCF loading conditions, is simulated by
using a 2D FE model. Results from parametric studies, varying parameters such as initial crack
angle, initial crack length and surface friction, are presented and qualitatively compared to field
observations.

Fatigue crack propagation

The choice of crack driving force G, adopted in this study, which holds for hyper-elasticity, can
be expressed as, cf. [4]

G =

∫
ΩX

−Σ · (W ∇X) dΩX (1)

with the so-called Eshelby stress tensor Σ. Moreover, W is a suitably chosen weight function of
unit value at the crack tip and ∇X is the material gradient operator.

227



Based on the crack driving force introduced above, an example of a rate independent prop-
agation law is formulated in the time domain as

d a

dt
= ȧ = γ〈Φ̇〉e∗ (2)

where a is the crack tip position, γ is a material parameter, Φ is a crack-driving potential and
〈•〉 = 1

2
(•+ |•|) is the MacCauley bracket. Continuing, the potential Φ is assumed as follows

Φ = 〈G · e∗ − Gth〉 (3)

where e∗ is the unit direction defined through

e∗ = argmax
e

lim
ε→0

G(a+ εe) · e (4)

In addition, Gth is a fracture threshold similar to the threshold value Kth used in propagation
laws of Paris’ type.

Based on eq. (2), a fatigue crack propagation algorithm may be devised. Consider a load
cycle defined over the time interval IN = [TN , TN+1]; the average crack growth per cycle may
be expressed as

d a

dN
=

1

|IN |

∫
IN

ȧdt (5)

By (numerically) evaluating this propagation rate (in the cycle domain) the crack growth over
a large number of cycles may then be determined by linear extrapolation.

Numerical examples

In order to study some characteristics of head check crack growth, in a piece of rail material
subjected to a moving load, a simplified problem is investigated (see Figure 1). The normal
load pN(x, t) is assumed to be given by an elastic Hertzian contact pressure distribution with a
contact width d, see for example [5] for details. Moreover, the traction stress pT(x, t) is obtained
from the normal pressure pN and the coefficient of friction μ by assuming full slip between wheel
and rail, i.e pT = μpN. The traction stress pT is here chosen to act in the direction opposite
to the velocity of the wheel indicating acceleration. Moreover, for the numerical investigations
presented, the material is assumed to be linear elastic and in a state of plane strain.

w

h

ϕ0

a0

d

v

pN

pT

x

Figure 1: Problem geometry and boundary conditions.
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Several parametric studies of crack growth have been carried out; however, only one set
of results will be presented here. In Figure 2, simulated crack paths can be seen where the
initial crack angle ϕ0 have been altered. From the figure it is observed that all shallow cracks
(15◦−30◦) propagate toward the surface while the deeper cracks curve downwards. Furthermore,
a transition zone is observed somewhere between 30◦ and 40◦ indicating that crack growth in
this region will be highly sensitive to perturbations.
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Figure 2: Crack paths for different initial angles ϕ0 = [15◦, 20◦, 25◦, 30◦, 40◦, 50◦, 60◦]) for μ =
0.45 and a0 = 2mm.
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Simulation of frictional effects in models for calculation of 
the equilibrium state of flexible pipe armouring wires in 
compression and bending 

Niels Højen Østergaard, Anders Lyckegaard and Jens H. Andreasen 

Summary. The motivation for the work presented in this paper is a specific failure mode known as lateral 
wire buckling occurring in the tensile armour layers of unbounded flexible pipes. Such structures are steel-
polymer composites with a wide range of applications in the offshore industry. The tensile armour layers are 
usually constituted by two layers of oppositely wound steel wires. These may become laterally unstable 
when a flexible pipe is exposed to repeated bending cycles and longitudinal compression. In order to model 
the mechanical behavior of the armouring wires within the pipe wall, a formulation based on the equilibrium 
of a curved beam embedded in an initially cylindrical surface bent into a toriod is applied. In the present 
work, the response of a single armouring wire subjected to compression and cyclic bending will be studied, 
in order to detect lateral buckling of the wire. Frictional effects are included as distributed tangential and 
transverse loads based on a simple regularized Coulomb model. 
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Virtual testing of cold-formed structural members 

Petr Hradil, Ludovic Fülöp and Asko Talja 

Summary. This paper introduces new modelling and evaluation algorithms for automated virtual testing of 
cold-formed structural members. These algorithms are integrated in Abaqus CAE plugin and verified against 
real tests of stainless steel hollow sections. Our tool is capable of creating finite element models including 
complex material behaviour, residual stresses and strains, enhanced material properties and geometrical 
imperfections. Also, it automatically evaluates the load carrying capacity of such models and creates test 
reports. The algorithms presented here can successfully assist engineers and researchers during the numerical 
analysis. 
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Summary.It is known that human eye has complex structure which includes many 
multilayered elements such as cornea, sclera and lamina cribrosa (LC).  In this regard, three 
problems concerning the deformation of multilayered shells in ophthalmology are considered. In 
the first problem the stress-strain state of lamina cribsosa of the optic nerve is regarded. In the 
second problem the stress-strain state of a three-layered outer shell of the eye is considered. In 
the third problem the effect of cornea multilayer structure on measurements of intraocular 
pressure (IOP) by Goldman’s and Maklakov’sapplanationtonometers is analyzed. 

 

Key words: multilayered shells, FEM, intraocular pressure. 
 

The stress-strain state of lami na cribsosa of the optic nerve 

It is known that under glaucoma the visual field changes due to atrophy of the visual – nerve 
fibres, which are deformed just at the level of lamina cribrosa[1].  

According to ophthalmologic data [2], LC consists of a few parallel layers of connective 
tissue containing elastic fibers. In [3,4] it was suggested that perhaps essential shear of 
the layers could cause the atrophy of the visual nerve fibres. In paper [5] it was revealed 
that when intraocular pressure increases “inflection point” appears. In order to detect the 
“point of inflexion” (Fig. 1) – the point, in which derivative of normal flexure with respect to 
radial coordinate attains its maximum value, the LC is modeled as multilayer shell of revolution 
with elastic ties between the layers. 

The complete system of 5n+2 differential equations is obtained. The boundary problem is 
solved numerically for shells with two and three layers with different values of the elastic 
parameters taking into account that the “outer” layer is the thickest one. 
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Figure 1.The scheme of LC from data [5]. 

 
The numerical solution of the problem for different values of elastic parameters  revealed 

that the essential shear of the layers occurs at the periphery of the LC. And the largest shear 
occurs at the level of the last layer, as it was observed by ophthalmologists. This phenomenon 
may lead to the atrophy of the optic nerve fibres. 

The results of calculation for the proposed moment model provided deflection mode that 
well agrees with clinical data [5]. 

The stress-strain state of a three-layered outer shell of the eye  

It is known that outer shell of the eye has multilayered structure and consists of a thick fibrous 
shell - the sclera, the middle shell - choroid, and the very thin and soft inner shell - the retina 
[6]. 

There are experimental data that the elastic properties of these shells are very different. 
Moreover, choroid refers to the “active” structures of the eye [7]: its size and stiffness varies 
deeply depending on blood filling, therefore it can change its biomechanical properties during 
the day. 

In order to estimate the influence of these factors on the possible development ofchoroidal 
and retinal detachments the problem of stress-strain state of a three-layered spherical shell under 
normal pressure in view of various thicknesses and elastic properties of its layers is considered.  

According to experimental data [6] sclera and cornea can be considered as transversally- 
isotropic shells. In this regard, the antecedent problem for two-layered spherical shell consisting 
of two transversely-isotropic layers of different thickness and biomechanical properties under 
normal intraocular pressure is considered. Both problems are solved using the three-dimensional 
theory of elasticity. Analysis of the stress-strain state of the eye is carried out with the 
possibility of the choroid to change it biomechanical properties. 

The comparison of the obtained results for the shell, consisting of three layers with different 
elastic properties, with the results obtained for one-layered shell with average elastic properties 
showed a significant change in the stress-strain state of the eye.  

Results obtained for multi-layered shell with different elastic properties reveled appearance 
of kinks on the graphs for the displacement and normal stresses and discontinuities on the 
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graphs for tangential stresses at the points corresponding to the boundaries of conjugation of the 
shells. 

With an increase of intraocular pressure an increase of kinks on the graphs for the 
displacements and normal stresses and discontinuities on the graphs for the tangential stresses is 
observed. Thus effects may lead to internal detachments of the softer layers of the eye shell - the 
sclera and choroid under increased intraocular pressure. 

Variation of elastic coefficients of choroidal shell most affects on displacements of the 
layers. At lower values of Young's modulus of the choroid larger displacements and stronger 
thinning of the choroid and retina is observed. Strong thinning of tissues can also lead to their 
detachments and tears. 

The effect of cornea multilayer structure on measurements of intraocular 
pressure (IOP) by Goldman’s and Maclakov’sapplanationtonometers 

In the cornea are five basic layers, which vary in thickness as well as in its structure and, 
consequently, have different biomechanical and elastic properties [6]. Therefore in ANSYS 
Mechanical software the corneoscleral eye shell is modeled as conjectured spherical 
transversally-isotropic shells with different diameters and elastic properties, therewith, the 
cornea splits into fourspherical layers with elastic properties. The modulus of elasticity in the 
thickness direction of both shells is assumed to be much smaller than the modulus of elasticity 
in the tangential direction.  

Axisymmetricnonlinear calculations for various values of elastic modulus of cornea and 
sclera under constant real intraocular pressure were carried out. For each series of calculation 
was carried out comparison of results obtained for multilayered shell and one-layered shell with 
average elastic modulus. 

It was shown that as the cornea on 90 % consists of stroma the elastic properties of cornea in 
the normal and tangential directions generally defines by elastic properties of stroma. The 
contribution of the stiff layers (Boumen’s and Descemet's membrane) in the average value of 
the elastic properties of the whole cornea appears unessential. The calculations showed that the 
stiffnesses of these shells affect the distribution of the contact stresses and dimensions of the 
contact surfaces. 

The comparison of the obtained results with the use of Maclakov method (weight 10 g) for 
multilayered cornea with the results obtained for one-layered shell with average elastic 
properties reveled that contact area in the first case is bigger than in the second case, hence the 
value of the tonometric pressure is lower. The Goldman’s method revealed the similar results. In 
that case the contact area has the constant value 3.06 mm, but the value of the applied force in 
the case of multilayered shell is smaller than in the case of one-layered shell with average elastic 
properties, hence the value of the tonometric pressure is lower.  Therefore, when we take into 
account heterogeneity of the elastic properties of the cornea layers we get more precise 
estimations for tonometric and real intraocular pressure.   

The results, carried out with account of multilayered structure of cornea revealed that the 
smaller contact area the greater part of strain goes to bending deformation.  

The modeling with the use of Maclakov method, especially for plummet weight 10 g, the 
essential increase of the contact area and influence of sclera on process of deformation was 
revealed. Sense the area contact in Goldman’s method equals to 3.06 mm while the use of 
Maclakov’s method gives the bigger areas under average intraocular pressures (from 10 to  
30 mm Hg), hence data for intraocular pressure obtained during measurements carried out by 
Goldman’s tonometers occurs more sensitive to changes of the cornea thickness, then data 
obtained by Maclakov’s tonometer. Moreover, the influence of the cornea thickness on data of 
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IOP obtained by Maclakov’s tonometer with plummet with the weight 5 g higher, then data 
obtained by plummet with the weight 10 g, which is in good agreement with the experimental 
data[8]. 
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Summary. A two component toughened epoxy adhesive was subjected to a series of mechanical tests
in order to assess the tensile, shear and compressive properties at room-temperature as well as sub-zero
temperatures. Extensive modeling of the Iosipescu shear test specimen was conducted with the LS DYNA
finite element software to verify the material models on coupon level. Different measurement methods,
e.g. strain gauges and digital image correlation, were used to obtain accurate strains in the initial linear
elastic part of the stress-strain curve and in the yield range for all test temperatures. The established
material model will be used to predict the failure load of single lap joints with both composite and
aluminium adherends.

Key words: adhesive, mechanical testing, modeling

Introduction

The aim of this work is to test and analyse the behaviour of adhesively bonded single lap joints
at low temperatures. The work is carried out within the project Arctic Materials of which the
main goal is to establish ”criteria and solutions for safe and cost-effective application of materials
for hydrocarbon exploration and production in arctic regions” [1]. Composite materials have a
high strength-to-weight ratio, excellent mechanical properties at sub-zero temperatures and a
resistance to corrosion making them applicable for products and structures that are exposed to
extreme environments [2, 3]. Adhesive bonding is an important joining method for composite
materials, and because of complex stress states in combination with toughened epoxy adhesives,
the joints are difficult to model. Therefore, extensive coupon testing is necessary to obtain
mechanical properties of the neat adhesive. The adhesive chosen for this study was the general
purpose, room temperature curing, two component epoxy adhesive DP410 from 3M.

Mechanical testing

Coupon

To obtain the mechanical properties necessary to develop a numerical model for the adhesive,
tests in tension, shear and compression were performed according to the standards ASTM D638,
ASTM D5379 (Iosipescu) and ASTM D695, respectively. All tests were performed at three
different temperatures; +23◦C, −5◦C and −30◦C. The most extensive testing was performed
on the Iosipescu shear specimens. First, tests were performed at +23◦C using a bi-axial strain
gauge oriented at ±45◦ to the loading axis to measure nomial shear strain. This provided
excellent results up to a strain of approximately 10%, before the strain measurements became
unreliable. Since the DP410 is a ductile material (at +23◦C), with a large plastic range, an
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Figure 1. Nominal shear stress-strain for one
specimen at −30◦C, from DIC and strain gauge
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Figure 2. Shear stress-strain for +23◦C ,−5◦C
and −30◦C

optical non-contact measurement method, digital image correlation (DIC) was used to obtain
strain measurements also for large deformations [4]. For the shear tests conducted at sub-zero
temperatures DIC and strain gauge were used simultaneously on all the specimens, DIC at
the specimen front side and strain gauge at the specimen back side. Results from the two
measurement methods compared well at all temperatures, as with the stress-strain relation at
−30◦C depicted in Figure 1. Figure 2 shows that the adhesive behaved markedly different for
the three temperatures, changing from very ductile at room temperature to brittle at −30◦C.

Single lap joints

Single lap joints were produced with quasi-isotropic glass fibre reinforced vinyl ester matrix
composite adherends as well as aluminium adherends. The single lap specimens were produced
from aluminium and composite sheets of dimensions 175 mm x 203 mm. Bondline thickness
was 0.2 mm and spacers were used to control the thickness. To reduce eccentricity in the joints
when testing, end tabs of the same thickness were adhered to the ends of the specimens. The
overlap length used in this study was 12 mm. Specimens of 25 mm width was cut from the
single lap sheets. Figure 3 shows the single lap joint, seen from the side. The joints will be
tested according to ASTM D1002 - 10, and results compared to numerical simulations.

Figure 3. Single lap

Numerical analysis

Numerical simulations were performed using the finite element software LS-DYNA.

Coupon

First, a model of the Iosipescu shear test was developed using stress-strain results from the
testing as input to the adhesive material model, *MAT 024 Piecewise-linear-plasticity. At this
point, the simulation was only performed up to the level of applied displacement where frac-
ture occured in the test, so no damage/failure criterion was necessary. The calculated strain
distribution was in good agreement with the measurements from the DIC, see Figures 4 and 6
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Figure 4. Shear strain distribution from
DIC, when cracking initiates
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Figure 5. Force-displacement measured during testing
and force-displacement output from LS-DYNA

Figure 6. Shear strain distribution mod-
eled in LS-DYNA

for shear strain distribution and Figure 5 for the force applied during testing and force output
from LS-DYNA. Second, a failure/damage criterion had to be implemented in order to simulate
the adhesive failure. A user-defined model was developed, using Voce hardening to describe the
stress-strain relation, Eq. (1), and a Johnson-Cook damage model describing strain at fracture,
Eq. (2):

σ = σ0 +

2∑
i=1

(
Qi

(
1− exp−Ciε

p))
(1)

εf = D1 +D2 exp
D3σ∗

(2)

σ0 is yield stress, εp is damage-equivalent plastic strain, Qi, Ci, D1, D2 and D3 are constants to
be determined and σ∗ is the stress triaxiality (hydrostatic pressure to von Mises stress ratio).
Fracture strains from tension (σ∗ = 1

3
), shear (σ∗ = 0) and compression (σ∗ = −1

3
) tests were

used to estimate the damage model constants.
This material model is still under development at the time of writing, but as can be seen

when comparing the test results (Figure 7) with numerical simulations (Figure 8), the fracture
process is initialized at the correct location.

Single lap joints

The material model developed for the adhesive will be used in simulations of single lap joints.
Figure 3 shows the single lap joint as modeled in LS-DYNA. The modeling of the adhesive fillet
(Figure 9) was based on microscopy investigation of the fillet geometry from the single lap joint
specimens (Figure 10). Results from numerical prediction of the lap joint ultimate load as well
as failure mode using the established material models will be compared to results from tensile
tests of the single lap joints.
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Figure 7. Iosipescu shear specimen after fracture
has occured

Figure 8. LS-DYNA simulation at crack initial-
ization

Figure 9. Microscope image of fillet from single
lap joint with aluminium adherends

Figure 10. Fillet geometry in LS-DYNA
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Summary. Recently, Shodja et al. [1] presented reproducing kernel particle method (RKPM) with
augmented corrected collocation method for treatment of material discontinuities in the context of tra-
ditional elasticity. The idea is extended to consider material discontinuities in the framework of couple
stress elasticity in the present study. Subsequently, it is employed to calculate the elastic fields associated
with a nano-sized elliptic inhomogeneity under a remote anti-plane applied stress field.

Key words: reproducing kernel particle method (RKPM), augmented corrected collocation method, cou-

ple stress theory, elliptic inhomogeneities.

Introduction

Consider an infinite isotropic body containing an isotropic elliptic cylindrical inhomogeneity
subjected to far-field uniform anti-plane loading as shown in Fig. 1. The length of the cylinder is
assumed to be infinitely extended parallel to the direction of the applied load, and the dimensions
of its cross-section are in the order of a few nanometers. If the principle purpose of interest is the
calculation of the elastic fields in the vicinity of a nano-size inhomogeneity the traditional theory
of elasticity fails to provide an accurate solution. Moreover, it is incapable of making distinction
between similar but different sizes of inhomogeneities. As a remedy it is proposed to formulate
the problem in the framework of couple stress elasticity which makes the interpretation of the
size effect possible. Although a few problems of couple stress elasticity are analytically solved
by different authors ([2],[3],[4]), but most of the boundary value problems in the context of
this theory are generally too complicated to be tackled analytically. Hence; numerical methods
such as reproducing kernel particle method (RKPM) can be utilized in order to circumvent this
difficulty.

Recently, Shodja et al. [1], developed RKPM with augmented corrected collocation method
for treatment of material discontinuities in the context of traditional elasticity. Utilizing this
simple and accurate technique, they analyzed a problem of crack-inhomogeneity interaction sub-
jected to uniaxial tension. In this work, in the presence of couple stresses the above-mentioned
method is employed in combination with the penalty method, in order to determine the elastic
fields of elliptic and circular inhomogeneities subjected to remote anti-plane stress. Comparison
of the numerical results to the analytical solution obtained by Haftbaradaran and Shodja [2],
proves the accuracy and efficacy of the numerical method.
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Numerical example

The elliptic inhomogeneity with semi-axes a1 and a2, shear modulus μ1 and curvature modulus
η1 is considered. As illustrated in Fig.1, the inhomogeneity is surrounded by an infinite matrix
with shear modulus μ2 and curvature modulus η2, and is subjected to far-field anti-plane loading,
σ13 = 1 units. The numerical example is solved assuming μ1/μ2 = 5, a1 = 3 nm, and a2 = 2 nm.
In Fig. 1 (ω, ξ) denotes the elliptic coordinates pair. Due to the symmetries, only one-quarter
of the plate has been considered. For the interior of the inhomogeneity and its exterior matrix,
309 and 503 particles are used, respectively.
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Figure 1. An elliptic inhomogeneity system subjected to far-field anti-plane loading.

The results obtained by utilization of augmented corrected collocation method are plotted
and compared to the analytical solutions in Figs. 2 and 3. It can be seen that the results of the
proposed numerical method are in reasonable agreement with the analytical solutions. In these
figures, σcl represents the classical stress tensor, whereas σs denotes the symmetric part of the
total stress tensor σ in the framework of couple stress elasticity.
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Figure 2. A comparison between RKPM and the analytical solutions; ξ3 and 3ξ-components of stresses
along the inhomogeneity-matrix interface, just inside the inhomogeneity.
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Figure 3. A comparison between RKPM and analytical solutions; ω3 and 3ω-components of stresses
along the inhomogeneity-matrix interface, just outside the inhomogeneity.
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Summary. Molecular dynamic simulations are performed to systematically investigate the 
structural�mechanical properties of ZnO nanorods (NRs) using the empirical Buckingham 
potential. The considered NRs have hexagonal cross-sections with lateral dimension ranging 
from 1-10nm and constant length 10.4nm. Different from its bulky counterpart, the results show 
that ZnO NRs undergo a size dependent four-stage deformation process: elastic stretching of 
initial Wurtzite structure, Wurtzite to body-centered tetragonal (BCT-4) phase transformation, 
stretching of the resulting BCT-4 structure and eventually brittle fracture. The critical stress for 
phase transformation decreases while the critical strain increases with increasing the NR size. 
The analyses indicate that the size dependency of phase transformation is dominated by the size 
effect on the Young’s modulus. 

Key words: ZnO Nanorods, molecular dynamic simulations, phase transformation, Young’s 
modulus, fracture. 

Introduction 

Quasi-one-dimensional nanostructures made of semiconductors possess large potential 
applications in electromechanical devices because of the unique electrical and mechanical 
properties associated with their finite size [1]. In particular, ZnO nanostructures, such as 
nanorods (NRs), nanowires and nanobelts have received great attention due to their excellent 
performance in electronic, piezoelectric, ferroelectric and optical applications [2]. The 
mechanical, optical and electric as well as piezoelectric properties of ZnO have been 
experimentally investigated. However, experimental evaluation of mechanical properties at the 
nano-scale is full of challenges and uncertainties due to crystalline structure, sample 
manipulation, geometry condition, instrument calibration, and so on [3]. Instead, atomistic 
simulations provide an alternative way to predict the structural�mechanical properties of ZnO 
nanostructures [4]. While it is not observed in experimental study, a novel transformation from 
original Wurtzite to body-centered tetragonal (BCT-4) phase has been numerically discovered 
on ZnO NRs under tension along with <0001> axial orientation [4]. To clarify those 
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controversial results between experiments and simulations, molecular dynamics (MD) 
simulations using LAMMPS (Large-Scale Atomic/Molecular Massively Parallel Simulator) 
code are performed in this study to investigate the mechanical properties of ZnO NRs. In 
addition to the elastic property, the size-dependent phase transformation as well as the fracture 
behaviour of ZnO NRs under uniaxial tension is examined. 

MD methods 

Wurtzite ZnO NRs oriented in <0001> with hexagonal cross-sections were generated with the 
lattice constant a = 3.2501Å, c = 5.2071Å, and internal parameter u = 0.3817 [5]. The lateral 
dimension D of the NRs varied from 1.0, 1.8, 2.4, 3.0, and 5.0 to 10nm, while the length L was 
constant 10.4nm. Empirical Buckingham potential (equation (1)) with Binks parameters (Table 
1) was adopted to describe the short-range atomic interactions [6]. As for the long-range 
Coulombic force, Ewald summation method was used. 
 

6
1

( ) exp( ) ( )
N

ij
total ij long ij

i j i ij

r C
E r A E

r�� �

� � � �11 r
 

(1) 

  
Periodicity required for Ewald summation were imposed on three directions for accurate 
Coulombic force calculation, therefore a sufficiently large gap along lateral directions was given 
to avoid interactions between neighbouring NRs. After geometric construction, an annealing 
process with an integration time step of 1 fs was performed to relax the NRs under the ambient 
pressure (NPT) in <0001> direction to stabilize the ZnO NRs. The uniaxial tensile strain with 
strain rate of 0.001/ps was applied to the NRs by extending the length along the tension 
direction to 30% strain, under NVT conditions at 5K. 
 

Table 1. Short-range interaction parameters for ZnO. 
 

Species A, eV �, Å C, eV Å 
O2- O2- 9547.96 0.21916 32.00 

Zn2+ O2- 529.70 0.3581 0.00 
Zn2+ Zn2+ 0.00 0.00 0.00 

Results and discussions 

The stress�strain relationships for different sizes of ZnO NRs are compared in figure 1. The 
results suggest that the deformation process of ZnO NRs consists of four stages: elastic 
stretching represented by the initial linear region, a phase transformation indicated by the stress 
relaxation, stretching of the new phase structure, and eventual fracture by the secondary stress 
relaxation. The mechanical response of ZnO NRs is significantly size dependent during the 
entire deformation process. In an effort to clarify the size effect, the Young’s modulus and the 
critical stress/strain for phase transformation are summarized as a function of the NR size in 
figure 2. The Young’s modulus was obtained from the slope of the initial elastic region on 
stress�strain curves. Critical stress and strain for phase transformation were directly read the 
corresponding values at the starting points of the first stress relaxation. 
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Figure 1. Stress�strain curves for sizes ranging from 1.0 to 10.0nm. 

0.00 0.05 0.10 0.15 0.20 0.25
0

5

10

15

20

25

Strain

S
tr

es
s,

 G
P

a
1.0nm
1.8nm
2.4nm
3.0nm
5.0nm
10.0nm

 

 

0 2 4 6 8 10
100

150

200

250

300

Y
o

u
n

g
's

 m
o

d
u

lu
s,

 G
P

a

D, nm

bulk value

140GPa

0 2 4 6 8 10
0

2

4

6

8

10

12

phase transition strain� P
T
, %

D, nm

5
P

T , G
P

a

10

15

20

25

30

phase transition stress

 
(a)                                                                (b) 

Figure 2. Size-dependent mechanical properties of ZnO NRs: (a) Young’s modulus and (b) 
critical strain and stress for phase transformation. 

 
The Young’s modulus of NRs within the sampling size is always higher than that of the 

bulk counterpart. With increasing the size from 1.0 to 10.0nm, the Young’s modulus decreases 
from about 260GPa to 145GPa which approaches the bulk value. Within the size range from 1.0 
to 10.0nm, the critical stress for phase transformation decreases about 40% while the strain 
increases 43%. Both critical stress and critical strain referred to different sizes of the NRs 
converge to a constant value when the size is sufficiently large. 

During the uniaxial tension, the system temperature is kept constant 5K at which atomic 
vibrations are well suppressed so that the thermal effect on the ductility is minimized. All ZnO 
NRs display brittle fracture at a relatively high strain over 15%, as shown in figure 3. 
Comparing with the previous study, this cleavage fracture at high strain is unique for the 
hexagonal cross-sectional NRs, distinguished from the cylindrical NRs that exhibit super 
ductility [7], and also from the square cross-sectional NRs that display lower fracture strain 
around 6% [8]. The main reason is that the cylindrical and square cross-sectional NRs cannot 
keep close-packed hexagonal (HCP) lattice structure in wurtzite ZnO during equilibrium and are 
distorted to a twisted configuration and even an amorphous structure. Therefore the initial 
structure prior to deformation is not perfect Wurtzite. 
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Figure 3. The fracture morphology of ZnO NWs with the size from 1.0 to 10.0nm. 
 

 

Conclusions 

Large-scale molecular dynamic simulation has been carried out to investigate the size-
dependent mechanical properties of ZnO NRs. Under uniaxial tension, ZnO NRs possess a four-
stage deformation process. In addition to the size-dependent Young’s modulus reported by 
previous studies, the phase transformation is also influenced by the size of NRs. The critical 
stress for phase transformation drastically increases while the critical strain decreases as the NR 
size decreases. It suggests that larger NRs attempt to keep the original Wurtzite structure 
comparing with smaller ones.  
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SSummary. We examine all-atom molecular dynamics to obtain mechanical properties of glass 
polystyrene, based on COMPASS force-field. Linear polymer glass model is built by self-
avoiding walk on a diamond lattice, including the exclusive volume effect of the bulky side 
group of polystyrene. This fast modeling method of full atom polystyrene enables us to obtain 
reliable mechanical properties of glass polystyrene. 

Key words: molecular dynamics, all-atom polymer model, polystyrene 

Introduction 

Considerable effort has been made to achieve computational modelling of polymer materials [1-
4]. However, it is in principle tough work to create reasonable atomistic models of glassy 
polymer solids [2-3]. A popular idea to obtain a glass model by quenching a molten molecular 
structure is disregarded for full atom modelling, due to the extremely low mobility of heavily 
polymerized molecules even in its molten states. Even if we could simulate a liquid polymer 
system, liquid-glass phase transitions – where the molecule's mobility is drastically reduced as 
called “slow-down” – is to be properly considered to obtain a good glassy solid polymer model. 
Hence  the  quality  of  glass  model  is  limited  by  the  cooling  rate  of  MD  simulations.  The  
difficulty of low mobility increases with increasing the molecular weight, so that simulating 
realistic length of long polymer molecules is still a challenge to high-performance computing 
facilities to date. 

Many of the preceding studies therefore concern the acceleration of molecular simulations. 
Among them, two major trends have been found to accelerate liquid polymer simulations; one is 
course-grained (CG) molecular dynamics [4], and the other Monte Carlo (MC) with so called 
“double-bridging”. However, those methods have also drawbacks; CG potentials are usually 
meant for liquid, and give accurate results only at the tuned temperature. Hence quenching 
molten polymer to glass state using CG is no longer correct. On the other hand, MC methods 
like double-bridging are difficult to implement for all-atom simulations, so that most of MC 
polymer melting methods accept CG models. Remapping from fictitious CG super-atom to real 
all-atom model requires “push-out” process that may induce another uncertainty into the model. 
Concerning various available polymerization methods often without melting, amorphous glass 
polymer can be modelled without simulating molten structures. 
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In  the  present  study,  we  rather  go  back  to  the  old  idea  of  the  similarity  between  self-
avoiding random-walk (SARW) and linear polymer molecules [2-3]. For glass polymer 
modelling, many studies based on the idea have been examined in the literature. We here have 
explicitly introduced an exclusive volume effect caused by the bulky side group, especially in 
the case of polystyrene (PS), and implemented a program code of full-atom polymer growth by 
SARW on diamond lattice. Our algorithm maintains reasonable local conformations suitable for 
starting structure of any molecular dynamics, and even provides a way to control global 
molecular arrangements represented by characteristic ratio. Furthermore, use of diamond 
template enables us to create nano-structured polymer models, like nano-spheres, nano-rods, or 
thin-films. 

Modeling method 

Random walk on diamond lattice is the most reasonable template for vinyl polymers because 
each carbon of polymer backbone has tetrahedral bonding structure similar to that in diamond. 
Actual bonding angles of the polymer backbone slightly deviate from the exact tetrahedral 
coordination due to the asymmetry. Such distortions in PS are mainly caused from the ionic 
interaction among the side groups, even though the electronic orbital still shows minimum 
energy for the symmetric tetrahedral bonding. Hence it is reasonable to use the diamond lattice 
as a template of PS molecules before introducing the side group effect. 

When growing a PS molecule by SARW, the new monomer in the current growth step of 
walk should have no wrapping over any other atoms. We introduce a spherical exclusive 
volume (see Fig. 1a) to represent the phenyl ring of the side group, and make sure that there is 
no atom in the sphere in each possible configuration. When an overwrapping is detected, this 
configuration is removed from the candidates for the next monomer. If there is no possible place 
for a new monomer, then it is regarded as a case of collision, and a few steps of backtracking is 
executed before starting a next trial of polymer growth. 

a      b   

Figure 1. (a) Schematic of the random walk process with the explicit exclusive volume of the 
phenyl ring. (b) The glass formation after equilibration and quenching process. 

 
Due to the bulky side group, the SARW process does not achieve a desired density of dense 

glassy polystyrene. Some compaction process is hence necessary to obtain a realistic model 
after the SAW (see Fig. 1b). This process, however, affects the resulting characteristic ratio that 
determines the polystyrene glass property. The annealing process in compression scales the 
characteristic ratio of linear PS molecules with n monomers as 
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where Rn is the end to end distance of the equilibrated system, and Rn0 of the initial structure 
generated by SARW. The scaling factor � can be obtained from the target and initial density as 
follows: 

Thus achieving higher density is the key to obtain a reasonably large characteristic ratio. On this 
purpose, the size of exclusive volume is adjusted, in balance of maintaining both a reasonable 
local conformation and the small scaling factor. 

The generated structure models are then confirmed to have no crossing phenyl rings. This is 
assured by calculating atomistic von Mises stress that shows an order of higher value for the 
atoms in the critically anomalous configuration than other normal ones. 
 

a          b  

c         d  

Figure 2. The properties of full-atom models of linear polystyrene, as a function of molecular 
weight: (a) density, (b) characteristic ratio, (c) Young’s modulus, and (d) Poisson’s ratio 
determined by uniaxial tension and compression tests. 
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Simulation Results 

All-atom models of linear PS glass are generated by the method described above, and 
COMPASS force field is assigned of reach atom [5-6]. Each model consists of 4800 monomers 
in about 9×9×9 nm size of periodic cell, while the molecular length is varied from 5 monomers 
to 1200 monomers per molecule. After equilibration and compression process in the elevated 
temperature of 600 K, the generated models are quenched to RT. The final densities obtained at 
the ambient pressure are shown in Fig. 2a, showing excellent agreement with reported 
experimental values [7]. The obtained characteristic ratio (Fig. 2b) may be reasonable, though 
those of longer molecules are lower than the values reported for free molecules in �-solvent. 
Bond length, bond angle, dihedral angle distributions are confirmed to be adequate, in addition 
to radial distribution functions. The equilibrated models are then subjected to 
tension/compression tests by molecular dynamics at RT, and Young’s modulus and Poisson’s 
ratio are determined for each molecular weight (Fig. 2c and 2a). 

Concluding Remarks 

All-atom molecular dynamics of linear polystyrene glass with various molecular weights has 
been examined. The new modeling method developed by the authors enables fast generation of 
reasonable glass models, resulting in better statistics and accuracy in the determined mechanical 
parameters. The obtained properties show excellent agreement with experimental properties. 

Acknowledgements 

This work was supported by the Research Council of Norway under NANOMAT KMB 
(MS2MP) Project No. 187269 and the computational resources provided by NOTUR – The 
Norwegian Metacenter for Computational Science. 

References 

[1] B. Vorselaars, A. V. Lyulin, M. A. J. Michels, J. Chem. Phys. 130, 074905 (2009) 
[2] D. N. Theodorou, U. W. Suter, Macromolecules 18, 1467 (1985) 
[3] M. Kotelyanskii, N. J. Wagner, M. E. Paulaitis, Macromolecules 29, 8497 (1996) 
[4] V. A. Harmandaris, N. P. Adhikari, N. F. A. van der Vegt, K. Kremer, 
Macromolecules 39, 6708 (2006) 
[5] H. Sun, J. Phys. Chem. B 102, 7338 (1998) 
[6] C. Li, P. Choi, P. R. Sundararajan, Polymer 51, 2803 (2010) 
[7] T. Ougizawa, G. T. Dee, D. J. Walsh, Polymer 30, 1675 (1989) 
 

251



Proceedings of the 24th Nordic Seminar on Computational Mechanics  
J. Freund and R. Kouhia (Eds.)      
© Aalto University, 2011                                                                                                                                                

Equilibrium crystal shapes on a non-horizontal 
wall 

Mika Reivinen and Eero-Matti Salonen 

 

Aalto University, School of Engineering, P.O.Box 12100, FI-00076 Aalto, Finland 
mika.reivinen@aalto.fi, emsalone@cc.hut.fi 

Summary. A formulation on equilibrium crystal shape determination based on the principle of 
virtual work is presented. Previous shape determination studies are based on the assumption of  
a horizontal wall below the crystal, but in the present study this restrictive assumption is no 
more used. The treatment is restricted to two dimensions. 
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Introduction 

Classical methods to determine equilibrium shapes of crystals are the Wulff construction and 
the Landau-Andreev formulation [1]. The present article reviews a method based on the 
principle of virtual work [2], [3]. A generalization to cover cases where the shape of the wall 
below the crystal may be arbitrary is made. The presentation is limited to two dimensions but 
the formulation can be extended rather straightforwardly also to three dimensions. The problem 
statement is given, the discrete formulation is presented shortly, and some numerical results are 
presented.  

Problem statement 

Let us consider Figure 1. The basic setting consists of a crystal (C), surrounded by liquid (L) 
and resting in equilibrium on a solid surface wall (W). The task is to determine the position of 
the interface surface S between the crystal and the liquid. The shape of the wall surface  is 
considered as given. 

Ŝ

The interface energy density J  depends on the orientation of the interface surface or here 
on the direction angle F : � �J J F� . The interface energy density between the wall and the 
crystal phase CWJ  and interface energy density between the wall and the liquid phase LWJ  
depend in principle on a given way on the position on . The interface touches the wall at points 
a and b, with contact angles a

Ŝ
  and b  which are all initially unknowns of the problem. The 

cross-sectional area C  of the crystal is assumed to be given in the problem statement. 
Correspondingly, the pressure C

A
p  in the crystal is an unknown constant. The known pressure in 

the liquid is taken according to the hydrostatic pressure distribution L 0 Lp p g z�� � , where 
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L�  is the constant density of the liquid, g the acceleration of gravity, z the upwards measured 
coordinate and 0p  a given pressure associated with the level 0z � . The position vector r on S 
is expressed in the form � �s�r r  where the s is arc length. The position vector  on  is 
expressed (sometimes in a piecewise manner) in the form 

r̂ Ŝ
� �ˆ ˆ u�r r where u is a suitable curve 

parameter. The unit normal vectors n and  on S and  are directed into the liquid and into the 
crystal and the unit tangent vectors t and  into the increasing directions of s and u, respectively 

n̂
t̂

Ŝ

 

 

Figure 1. Some notations. 

In the case of non-constant interface energy, the equilibrium requires the torque acting on 
the surface. The torque m is obtained from [3] 

 
d
d

m
J
F

� � . (1) 

� �J FDepending on the choice of interface energy density , the crystal shape is necessarily no 
more a smooth curve, but it may consist of straight parts, and perhaps of angular points where 
the tangent of interface is not continuous. 

Virtual work 

The principle of virtual work is a well-known formulation with wide application areas in 
mechanics. The virtual work equation for the interface problem under study is 

 int boundW W W W; ; ; ;G � � �ext 0 , (2) 

where intW;  is the virtual work of the internal, forces extW;  is the virtual work of the external 
forces and boundW;  is the virtual work of from the boundary terms. The principle of virtual 
work states that (2) is valid for any virtual movement of the interface. The three virtual work 
terms are presented in detail in [2] and [3]. Further, it is shown that the relevant equations 
follow from (2). 
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Discrete formulation 

The discrete formulation is based on a kind of finite element method. The interface is 
discretized by two-noded line elements or segments. Figure 2 shows the notations for a generic 
line segment. 
 

 
 

Figure 2. A generic line segment. 

The geometry of the discrete interface model is fixed by a list consisting of the nodal Cartesian 
coordinates, say X, and of the global node numbers of the segments in the model. The task is to 
determine that X for which the main system equations (equilibrium equations) are satisfied. An 
additional unknown is the pressure Cp  in the crystal. The corresponding additional system 
equation is the area constraint C . It is to be noted that CA � A p  appears in the equilibrium 
equations but not in the constraint equation. As the interface determination problem is strongly 
non-linear, the solution must be found iteratively. 
 The virtual work for the interface model (with respect to a current configuration) obtains the 
form 

 
dof

1

N

i i
i

W Q q; ;
�

� 1 , (3) 

where i  is the i:th generalized force corresponding to the i:th movement i  (or generalized 
coordinate) and dof

Q q
N  the total number of movements. The generalized forces must vanish and 

the area constraint must be satisfied. Thus, the system equations are 

  (4) dof

C

0, 1,2, ,

.
iQ i N

A A

� �

�

�

In the case of non-horizontal wall, the contribution from the wall to the cross-sectional area A 
has to be taken into account. The area can be determined straightforwardly using the discretized 
interface between crystal and liquid and the interface between crystal and wall. The contribution 
to the cross-sectional area from the line segment is 

  � 2 1 1 2
1

2
A x z x z> � � � , (5) 

where 1x , , 1z 2x  and  area the Cartesian coordinates of nodal points. 2z
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Applications 

In the case of constant interface energy density, constJ � , it is possible to compare the 
numerical solution with analytical solution, and in some cases of horizontal wall and non-
constant interface energy density, � �J J F� , one may assess the numerical solution applying 
Wulff construction. In this study both cases are included, but here only two simple cases with 
constant surface tension are presented. In the first example the wall is a horizontal plane 0z � . 
In the second example the wall consists of an incline z x� �  when x < 0, and a horizontal 
plane  when . The energy density 0z � 0x N J  is constant so no torque appears. Gravity is 
neglected, and therefore the pressure difference between crystal and liquid is constant. The fixed 
area for both cases is given as two units. The solution is a “soap bubble” with a constant radius 
with LW CW 1/ 2J J � J� � . , and the well-known Young’s formula gives the contact angle 

3 / 4 4� . In the first example point a is fixed at the origin and point b is free, while in the 
second example both boundary points are free. 

The solution of first case is presented in Figure 3(a), and of the second case in Figure 3(b). It 
can be seen that the accuracy of the discrete solutions are acceptable. 
 
 

 
          (a)                                                                             (b) 
 

 

-0.5 0.5 1

0.2

0.4

0.6

0.8

1

1.2

1.4

-0.25 0.25 0.5 0.75 1 1.25 1.5

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 

 
 
 

Figure 3. Initial, exact (dashed) and final shapes. (a) Crystal on a horizontal wall,  
                                    (b) Crystal on a non-horizontal wall. 
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• Fluid-structure interaction 
• Modelling of materials and multi-material  

composites 
• Smart structures and functional materials 
• Ice-structure interaction, ice mechanics 
• Risk-informed life management of structures 
• Simulation of ships and other vehicle
• Non-linear simulation of welding and manufacturing  

processes

Additional information
Eila Lehmus, Technology Manager 
Tel. +358 20 722 6946, eila.lehmus@vtt.fi

VTT - a research  
partner in
structural 
mechanics



MAGNUS MALMBERG OY ON RAKENNESUUNNITTELUUN 
ERIKOISTUNUT INSINÖÖRITOIMISTO. 

 

Päätoimialamme ovat liike- ja toimistorakennusten, 
julkisten rakennusten, teollisuusrakennusten sekä 
vaativien asuinrakennusten rakennesuunnittelu kaik-
kine osa-alueineen. Teemme sekä uudisrakentamisen 
että korjausrakentamisen projekteja. 
 
Viimevuosien kohteitamme ovat olleet mm.: 

� Skanska Oy:n pääkonttori Ruskeasuolle 
� Makkaratalon saneeraus 
� Metla, puurakenteinen toimistotalo, vuoden 

puurakenne 2005 
� Laajasalon kirkko, vuoden puurakenne 2004 
� Merikeskus Vellamo Kotkassa, vuoden teräsra-

kenne 2008 
 
Panostamme yhteistyökykyyn, vastuullisuuteen ja 
innovatiiviseen suunnitteluun. Tarjoamme asiakkail-
lemme ratkaisuja ja sitoutumista saamiimme toimek-
siantoihin. Tavoitteenamme on olla alan johtava asian-
tuntija. 
 
Keväällä 2011 on aloittanut täydennyskoulutusohjel-
mamme MM Rakenneinstituutti (*, joka tarjoaa junio-
reille pätevöitymiskoulutusta ja senioreille mahdolli-
suuden pitää teoreettisen ammattitaidon ajan tasalla. 
 
Haluamme kantaa vastuumme myös tulevaisuuden 
asiantuntijoiden kasvattamisesta. Kesäkaudeksi 2011 
palkkasimme 12 harjoittelijaa, puolet aiemmin olleita, 
puolet uusia, puolet TUT:stä, loput Aalto yliopistosta 
ja AMK Metropoliasta. 

 
 
          TANGO, FEM-MALLI 
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Metsäliitto Cooperative, Finnforest 

Metsäliitto Wood Products Industry, Finnforest delivers competitive solutions developed according to customer 
needs. Our main strengths include a service-oriented operating model, long expertise in advanced and ecological 
wooden structures and reliability of delivery.  

Our solutions utilize high-quality Nordic wood as a raw material. Due to the slow growth of Nordic forests, our 
premium products have excellent durability and appearance properties, which make them ideal for demanding 
applications and end-uses.  Also, by using wood as a building material our customers can contribute to mitigating 
climate change. 

To ensure that our customers receive the best value on the market, we continuously invest in the development of our 
products, services and expertise. This way we can meet the ever-tightening technical, environmental and energy 
requirements. 

We specialize in serving the needs of the construction industry, other industrial customers as well as the home and 
living area. In these segments, we are the leading wood products supplier in Europe, and offer our customers a 
comprehensive service network that is present in 20 countries. We serve home improvers and end-users through 
DIY chains and other distributors.  

We are the leading wood product supplier in the following customer segments in particular: 
• Commercial, public and residential building and construction  
• Industrial customers, such as window, door and moulding manufacturers, other manufacturers serving 

building and construction, and the transport vehicle industry  
• Interior decoration, renovation, garden and yard furnishing 

Our four business lines, complementary to each other, include Solid Wood, Engineered Wood, Building Products 
and Home and Living. We are a European forerunner in engineered wood products and solutions, investing in 
research and in the continuous development of products and know-how to meet increased customer requirements.  

Our annual sales total 902 million euros, and we employ 3,000 professionals. Finnforest is a part of the Metsäliitto 
Group, an international forest industry group present in some 30 countries. 
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Wednesday�02.11 Thursday�03.11 Friday�04.11
7:30 Registration�

Plenary�lectures: Marina�congress�center
Nordia 8:00 Opening� 8:00 S6

8:15 S1 8:40 Coffee�break
Parallel�sessions: 10:15 Coffee�break 9:00 S7A S7B S7C
A:��Nordia 10:45 S2A S2B S2C 11:00 Lunch�
B:��Nautica 12:45 Lunch� 12:00 S8A S8B S8C
C:��Baltica 13:45 S3 14:00 Break

15:15 S4A S4B S4C 14:15 S9
17:15 Coffee�break 15:25 Closing
17:30 S5

18:00 Icebreaking�reception 18.40
and�pre�registration 19:45 Reception�and�dinner
Key�West�bar 20:15 Hotel�Kämp
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